Recently, instruction-tuned large language models (LLMs) are showing prominent performance on various tasks, such as question answering. However, the majority of instruction-tuned LLMs are English-centric, which hinders their application to low-resource language QA. In this paper, we propose COde-Mixed Multilingual Instruction Tuning (COMMIT) to adapt English-centric LLM to low-resource language QA. We point out two main causes of English-centricness: imbalance of unlabeled data, and English-centric instruction tuning datasets. To deviate from English-centric instruction tuning, we propose to specialize code-mixing for instruction tuning, which blocks code-mixing in English templates, to leverage the potential of its superiority. To overcome data imbalance, we perform cross-lingual alignment. The majority of cross-lingual alignment works focused on making representations similar, which is not desirable to decoder-based LLMs, such as LLaMA. Therefore, we propose code-mixed continual causal language modeling to align the decoder. COMMIT improves the exact match score of low-resourced language QA by up to 32x. Code is publicly available.
Instructional videos make learning knowledge more efficient, by providing a detailed multimodal context of each procedure in instruction.A unique challenge posed by instructional videos is key-object degeneracy, where any single modality fails to sufficiently capture the key objects referred to in the procedure. For machine systems, such degeneracy can disturb the performance of a downstream task such as dense video captioning, leading to the generation of incorrect captions omitting key objects. To repair degeneracy, we propose a retrieval-based framework to augment the model representations in the presence of such key-object degeneracy. We validate the effectiveness and generalizability of our proposed framework over baselines using modalities with key-object degeneracy.
World models have improved the ability of reinforcement learning agents to operate in a sample efficient manner, by being trained to predict plausible changes in the underlying environment. As the core tasks of world models are future prediction and commonsense understanding, our claim is that pre-trained language models (PLMs) already provide a strong base upon which to build world models. Worldformer is a recently proposed world model for text-based game environments, based only partially on PLM and transformers. Our distinction is to fully leverage PLMs as actionable world models in text-based game environments, by reformulating generation as constrained decoding which decomposes actions into verb templates and objects. We show that our model improves future valid action prediction and graph change prediction. Additionally, we show that our model better reflects commonsense than standard PLM.
We study event understanding as a critical step towards visual commonsense tasks. Meanwhile, we argue that current object-based event understanding is purely likelihood-based, leading to incorrect event prediction, due to biased correlation between events and objects. We propose to mitigate such biases with do-calculus, proposed in causality research, but overcoming its limited robustness, by an optimized aggregation with association-based prediction.We show the effectiveness of our approach, intrinsically by comparing our generated events with ground-truth event annotation, and extrinsically by downstream commonsense tasks.