This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Large Language Models (LLMs) have demonstrated good performance in many reasoning tasks, but they still struggle with some complicated reasoning tasks including logical reasoning. One non-negligible reason for LLMs’ suboptimal performance on logical reasoning is their overlooking of understanding logical fallacies correctly. To evaluate LLMs’ capability of logical fallacy understanding (LFU), we propose five concrete tasks from three cognitive dimensions of WHAT, WHY, and HOW in this paper. Towards these LFU tasks, we have successfully constructed a new dataset LFUD based on GPT-4 accompanied by a little human effort. Our extensive experiments justify that our LFUD can be used not only to evaluate LLMs’ LFU capability, but also to fine-tune LLMs to obtain significantly enhanced performance on logical reasoning.
Emotional intelligence in large language models (LLMs) is of great importance in Natural Language Processing. However, the previous research mainly focus on basic sentiment analysis tasks, such as emotion recognition, which is not enough to evaluate LLMs’ overall emotional intelligence. Therefore, this paper presents a novel framework named EmotionQueen for evaluating the emotional intelligence of LLMs. The framework includes four distinctive tasks: Key Event Recognition, Mixed Event Recognition, Implicit Emotional Recognition, and Intention Recognition. LLMs are requested to recognize important event or implicit emotions and generate empathetic response.We also design two metrics to evaluate LLMs’ capabilities in recognition and response for emotion-related statements. Experiments yield significant conclusions about LLMs’ capabilities and limitations in emotion intelligence.
In the era of social media video platforms, popular “hot-comments” play a crucial role in attracting user impressions of short-form videos, making them vital for marketing and branding purpose. However, existing research predominantly focuses on generating descriptive comments or “danmaku” in English, offering immediate reactions to specific video moments. Addressing this gap, our study introduces HOTVCOM, the largest Chinese video hot-comment dataset, comprising 94k diverse videos and 137 million comments. We also present the ComHeat framework, which synergistically integrates visual, auditory, and textual data to generate influential hot-comments on the Chinese video dataset. Empirical evaluations highlight the effectiveness of our framework, demonstrating its excellence on both the newly constructed and existing datasets.
The evaluation of the problem-solving capability under incomplete information scenarios of Large Language Models (LLMs) is increasingly important, encompassing capabilities such as questioning, knowledge search, error detection, and path planning. Current research mainly focus on LLMs’ problem-solving capability such as “Twenty Questions”.However, these kinds of games do not require recognizing misleading cues which are necessary in the incomplete information scenario.Moreover, the existing game such as “Who is undercover” are highly subjective, making it challenging for evaluation.Therefore, in this paper, we introduce a novel game named BrainKing based on the “Who is undercover” and “Twenty Questions” for evaluating LLM capabilities under incomplete information scenarios. It requires LLMs to identify target entities with limited yes-or-no questions and potential misleading answers. By setting up easy, medium, and hard difficulty modes, we comprehensively assess the performance of LLMs across various aspects. Our results reveal the capabilities and limitations of LLMs in BrainKing, providing significant insights of LLM problem-solving levels.
This paper presents a novel solution to tackle the challenges that posed by the abundance of non-standard addresses, which input by users in modern applications such as navigation maps, ride-hailing apps, food delivery platforms, and logistics services. These manually entered addresses often contain irregularities, such as missing information, spelling errors, colloquial descriptions, and directional offsets, which hinder address-related tasks like address matching and linking. To tackle these challenges, we propose GeoAgent, a new framework comprising two main components: a large language model (LLM) and a suite of geographical tools. By harnessing the semantic understanding capabilities of the LLM and integrating specific geospatial tools, GeoAgent incorporates spatial knowledge into address texts and achieves efficient address standardization. Further, to verify the effectiveness and practicality of our approach, we construct a comprehensive dataset of complex non-standard addresses, which fills the gaps in existing datasets and proves invaluable for training and evaluating the performance of address standardization models in this community. Experimental results demonstrate the efficacy of GeoAgent, showcasing substantial improvements in the performance of address-related models across various downstream tasks.
Multi-Modal Knowledge Graphs (MMKGs) have proven valuable for various downstream tasks. However, scaling them up is challenging because building large-scale MMKGs often introduces mismatched images (i.e., noise). Most entities in KGs belong to the long tail, meaning there are few images of them available online. This scarcity makes it difficult to determine whether a found image matches the entity. To address this, we draw on the Triangle of Reference Theory and suggest enhancing vision-language models with concept guidance. Specifically, we introduce COG, a two-stage framework with COncept-Guided vision-language models. The framework comprises a Concept Integration module, which effectively identifies image-text pairs of long-tailed entities, and an Evidence Fusion module, which offers explainability and enables human verification. To demonstrate the effectiveness of COG, we create a dataset of 25k image-text pairs of long-tailed entities. Our comprehensive experiments show that COG not only improves the accuracy of recognizing long-tailed image-text pairs compared to baselines but also offers flexibility and explainability.
Concept reasoning is an important capability for models to understand the world. However, the existing datasets, such as concept extraction and concept generation, suffer from modeledge leakage and context leakage. To address these limitations, we construct a dataset of concept reasoning for large language models (CR-LLM) with modeledge leakage prevention and context leakage prevention, which consists of 2,167 samples and covers different concept types. In addition, we propose a hybrid reasoning method, consisting of inductive reasoning, deductive reasoning and a controller. This method allows large language models to adaptively select the optimal reasoning method for each input sample. Finally, we conduct extensive experiments on CR-LLM using different models and methods. The results show that existing large language models and reasoning methods perform sub-optimally in the concept reasoning task. In contrast, our proposed method significantly improves the capabilities, achieving a 7% increase in accuracy compared to CoT and demonstrating better granularity. We release CR-LLM and code at https://github.com/Nianqi-Li/Concept-Reasoning-for-LLMs.
Relation triple extraction, which outputs a set of triples from long sentences, plays a vital role in knowledge acquisition. Large language models can accurately extract triples from simple sentences through few-shot learning or fine-tuning when given appropriate instructions. However, they often miss out when extracting from complex sentences. In this paper, we design an evaluation-filtering framework that integrates large language models with small models for relational triple extraction tasks. The framework includes an evaluation model that can extract related entity pairs with high precision. We propose a simple labeling principle and a deep neural network to build the model, embedding the outputs as prompts into the extraction process of the large model. We conduct extensive experiments to demonstrate that the proposed method can assist large language models in obtaining more accurate extraction results, especially from complex sentences containing multiple relational triples. Our evaluation model can also be embedded into traditional extraction models to enhance their extraction precision from complex sentences.
Previous works of negation understanding mainly focus on negation cue detection and scope resolution, without identifying negation subject which is also significant to the downstream tasks. In this paper, we propose a new negation triplet extraction (NTE) task which aims to extract negation subject along with negation cue and scope. To achieve NTE, we devise a novel Syntax&Semantic-Enhanced Negation Extraction model, namely SSENE, which is built based on a generative pretrained language model (PLM) of Encoder-Decoder architecture with a multi-task learning framework. Specifically, the given sentence’s syntactic dependency tree is incorporated into the PLM’s encoder to discover the correlations between the negation subject, cue and scope. Moreover, the semantic consistency between the sentence and the extracted triplet is ensured by an auxiliary task learning. Furthermore, we have constructed a high-quality Chinese dataset NegComment based on the users’ reviews from the real-world platform of Meituan, upon which our evaluations show that SSENE achieves the best NTE performance compared to the baselines. Our ablation and case studies also demonstrate that incorporating the syntactic information helps the PLM’s recognize the distant dependency between the subject and cue, and the auxiliary task learning is helpful to extract the negation triplets with more semantic consistency. We further demonstrate that SSENE is also competitive on the traditional CDSR task.
Analogical reasoning is a fundamental cognitive ability of humans. However, current language models (LMs) still struggle to achieve human-like performance in analogical reasoning tasks due to a lack of resources for model training. In this work, we address this gap by proposing ANALOGYKB, a million-scale analogy knowledge base (KB) derived from existing knowledge graphs (KGs). ANALOGYKB identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large language models (LLMs), followed by minor human efforts for data quality control. Evaluations on a series of datasets of two analogical reasoning tasks (analogy recognition and generation) demonstrate that ANALOGYKB successfully enables both smaller LMs and LLMs to gain better analogical reasoning capabilities. Resources of this paper can be found at https://github.com/siyuyuan/analogykb.
Role-playing agents (RPAs), powered by large language models, have emerged as a flourishing field of applications. However, a key challenge lies in assessing whether RPAs accurately reproduce the personas of target characters, namely their character fidelity. Existing methods mainly focus on the knowledge and linguistic patterns of characters. This paper, instead, introduces a novel perspective to evaluate the personality fidelity of RPAs with psychological scales. Overcoming drawbacks of previous self-report assessments on RPAs, we propose InCharacter, namely **In**terviewing **Character** agents for personality tests. Experiments include various types of RPAs and LLMs, covering 32 distinct characters on 14 widely used psychological scales. The results validate the effectiveness of InCharacter in measuring RPA personalities. Then, with InCharacter, we show that state-of-the-art RPAs exhibit personalities highly aligned with the human-perceived personalities of the characters, achieving an accuracy up to 80.7%.
Teachers are important to imparting knowledge and guiding learners, and the role of large language models (LLMs) as potential educators is emerging as an important area of study. Recognizing LLMs’ capability to generate educational content can lead to advances in automated and personalized learning. While LLMs have been tested for their comprehension and problem-solving skills, their capability in teaching remains largely unexplored.In teaching, questioning is a key skill that guides students to analyze, evaluate, and synthesize core concepts and principles.Therefore, our research introduces a benchmark to evaluate the questioning capability in education as a teacher of LLMs through evaluating their generated educational questions, utilizing Anderson and Krathwohl’s taxonomy across general, monodisciplinary, and interdisciplinary domains. We shift the focus from LLMs as learners to LLMs as educators, assessing their teaching capability through guiding them to generate questions. We apply four metrics, including relevance, coverage, representativeness, and consistency, to evaluate the educational quality of LLMs’ outputs. Our results indicate that GPT-4 demonstrates significant potential in teaching general, humanities, and science courses; Claude2 appears more apt as an interdisciplinary teacher. Furthermore, the automatic scores align with human perspectives.
Despite remarkable advancements in emulating human-like behavior through Large Language Models (LLMs), current textual simulations do not adequately address the notion of time. To this end, we introduce TimeArena, a novel textual simulated environment that incorporates complex temporal dynamics and constraints that better reflect real-life planning scenarios. In TimeArena, agents are asked to complete multiple tasks as soon as possible, allowing for parallel processing to save time. We implement the dependency between actions, the time duration for each action, and the occupancy of the agent and the objects in the environment. TimeArena grounds to 30 real-world tasks in cooking, household activity, and laboratory work. We conduct extensive experiments with various LLMs using TimeArena. Our findings reveal that even the most powerful models, e.g., GPT-4, still lag behind humans in effective multitasking, underscoring the need for enhanced temporal awareness in the development of language agents.
Large language models (LLMs) excellently generate human-like text, but also raise concerns about misuse in fake news and academic dishonesty. Decoding-based watermark, particularly the watermark based on the GumbelMax trick (GM watermark), is a standout solution for safeguarding machine-generated texts due to its notable detectability. However, GM watermark encounters a major challenge with generation diversity, always yielding identical outputs for the same prompt, negatively impacting generation diversity and user experience. To overcome this limitation, we introduce a new type of GM watermark, the Logits-Addition watermark, as well as three variants that aim to enhance diversity, particularly the GumbelSoft watermark (i.e., the softmax variant of the Logits-Addition watermark). When assessed for detectability in high diversity settings, our Gumbelsoft demonstrates superior performance, with its AUROC score exceeding those of the two alternative variants by a margin of 0.1 to 0.3 and outperforming other decoding-based watermarking methods by a minimum of 0.1.
Information extraction (IE) has been studied extensively. The existing methods always follow a fixed extraction order for complex IE tasks with multiple elements to be extracted in one instance such as event extraction. However, we conduct experiments on several complex IE datasets and observe that different extraction orders can significantly affect the extraction results for a great portion of instances, and the ratio of sentences that are sensitive to extraction orders increases dramatically with the complexity of the IE task. Therefore, this paper proposes a novel adaptive ordered IE paradigm to find the optimal element extraction order for different instances, so as to achieve the best extraction results. We also propose an reinforcement learning (RL) based framework to generate optimal extraction order for each instance dynamically. Additionally, we propose a co-training framework adapted to RL to mitigate the exposure bias during the extractor training phase. Extensive experiments conducted on several public datasets demonstrate that our proposed method can beat previous methods and effectively improve the performance of various IE tasks, especially for complex ones.
The vital role of analogical reasoning in human cognition allows us to grasp novel concepts by linking them with familiar ones through shared relational structures. Despite the attention previous research has given to word analogies, this work suggests that Large Language Models (LLMs) often overlook the structures that underpin these analogies, raising questions about the efficacy of word analogies as a measure of analogical reasoning skills akin to human cognition. In response to this, our paper introduces a task of analogical structure abduction, grounded in cognitive psychology, designed to abduce structures that form an analogy between two systems. In support of this task, we establish a benchmark called SCAR, containing 400 scientific analogies from 13 distinct fields, tailored for evaluating analogical reasoning with structure abduction. The empirical evidence underlines the continued challenges faced by LLMs, including ChatGPT and GPT-4, in mastering this task, signifying the need for future exploration to enhance their abilities.
Prompt engineering, as an efficient and effective way to leverage Large Language Models (LLM), has drawn a lot of attention from the research community. The existing research primarily emphasizes the importance of adapting prompts to specific tasks, rather than specific LLMs. However, a good prompt is not solely defined by its wording, but also binds to the nature of the LLM in question. In this work, we first quantitatively demonstrate that different prompts should be adapted to different LLMs to enhance their capabilities across various downstream tasks in NLP. Then we novelly propose a model-adaptive prompt optimizer (MAPO) method that optimizes the original prompts for each specific LLM in downstream tasks. Extensive experiments indicate that the proposed method can effectively refine prompts for an LLM, leading to significant improvements over various downstream tasks.
In everyday life, humans often plan their actions by following step-by-step instructions in the form of goal-oriented scripts. Previous work has exploited language models (LMs) to plan for abstract goals of stereotypical activities (e.g., “make a cake”), but leaves more specific goals with multi-facet constraints understudied (e.g., “make a cake for diabetics”). In this paper, we define the task of constrained language planning for the first time. We propose an over-generate-then-filter approach to improve large language models (LLMs) on this task, and use it to distill a novel constrained language planning dataset, Coscript, which consists of 55,000 scripts. Empirical results demonstrate that our method significantly improves the constrained language planning ability of LLMs, especially on constraint faithfulness. Furthermore, Coscript is demonstrated to be quite effective in endowing smaller LMs with constrained language planning ability.
Concepts benefit natural language understanding but are far from complete in existing knowledge graphs (KGs). Recently, pre-trained language models (PLMs) have been widely used in text-based concept extraction (CE). However, PLMs tend to mine the co-occurrence associations from massive corpus as pre-trained knowledge rather than the real causal effect between tokens. As a result, the pre-trained knowledge confounds PLMs to extract biased concepts based on spurious co-occurrence correlations, inevitably resulting in low precision. In this paper, through the lens of a Structural Causal Model (SCM), we propose equipping the PLM-based extractor with a knowledge-guided prompt as an intervention to alleviate concept bias. The prompt adopts the topic of the given entity from the existing knowledge in KGs to mitigate the spurious co-occurrence correlations between entities and biased concepts. Our extensive experiments on representative multilingual KG datasets justify that our proposed prompt can effectively alleviate concept bias and improve the performance of PLM-based CE models.
Large language models (LLMs) have been widely studied for their ability to store and utilize positive knowledge. However, negative knowledge, such as “lions don’t live in the ocean”, is also ubiquitous in the world but rarely mentioned explicitly in text. What do LLMs know about negative knowledge?This work examines the ability of LLMs on negative commonsense knowledge. We design a constrained keywords-to-sentence generation task (CG) and a Boolean question answering task (QA) to probe LLMs.Our experiments reveal that LLMs frequently fail to generate valid sentences grounded in negative commonsense knowledge, yet they can correctly answer polar yes-or-no questions. We term this phenomenon the belief conflict of LLMs.Our further analysis shows that statistical shortcuts and negation reporting bias from language modeling pre-training cause this conflict.
Similes play an imperative role in creative writing such as story and dialogue generation. Proper evaluation metrics are like a beacon guiding the research of simile generation (SG). However, it remains under-explored as to what criteria should be considered, how to quantify each criterion into metrics, and whether the metrics are effective for comprehensive, efficient, and reliable SG evaluation. To address the issues, we establish HAUSER, a holistic and automatic evaluation system for the SG task, which consists of five criteria from three perspectives and automatic metrics for each criterion. Through extensive experiments, we verify that our metrics are significantly more correlated with human ratings from each perspective compared with prior automatic metrics. Resources of HAUSER are publicly available at https://github.com/Abbey4799/HAUSER.
Image-text retrieval is a core task in the multi-modal domain, which arises a lot of attention from both research and industry communities. Recently, the booming of visual-language pre-trained (VLP) models has greatly enhanced the performance of cross-modal retrieval. However, the fine-grained interactions between objects from different modalities are far from well-established. This issue becomes more severe in the e-commerce domain, which lacks sufficient training data and fine-grained cross-modal knowledge. To alleviate the problem, this paper proposes a novel e-commerce knowledge-enhanced VLP model FashionKLIP. We first automatically establish a multi-modal conceptual knowledge graph from large-scale e-commerce image-text data, and then inject the prior knowledge into the VLP model to align across modalities at the conceptual level. The experiments conducted on a public benchmark dataset demonstrate that FashionKLIP effectively enhances the performance of e-commerce image-text retrieval upon state-of-the-art VLP models by a large margin. The application of the method in real industrial scenarios also proves the feasibility and efficiency of FashionKLIP.
Entity typing aims to assign types to the entity mentions in given texts. The traditional classification-based entity typing paradigm has two unignorable drawbacks: 1) it fails to assign an entity to the types beyond the predefined type set, and 2) it can hardly handle few-shot and zero-shot situations where many long-tail types only have few or even no training instances. To overcome these drawbacks, we propose a novel generative entity typing (GET) paradigm: given a text with an entity mention, the multiple types for the role that the entity plays in the text are generated with a pre-trained language model (PLM). However, PLMs tend to generate coarse-grained types after fine-tuning upon the entity typing dataset. In addition, only the heterogeneous training data consisting of a small portion of human-annotated data and a large portion of auto-generated but low-quality data are provided for model training. To tackle these problems, we employ curriculum learning (CL) to train our GET model on heterogeneous data, where the curriculum could be self-adjusted with the self-paced learning according to its comprehension of the type granularity and data heterogeneity. Our extensive experiments upon the datasets of different languages and downstream tasks justify the superiority of our GET model over the state-of-the-art entity typing models. The code has been released on https://github.com/siyuyuan/GET.
The ability to recognize analogies is fundamental to human cognition. Existing benchmarks to test word analogy do not reveal the underneath process of analogical reasoning of neural models. Holding the belief that models capable of reasoning should be right for the right reasons, we propose a first-of-its-kind Explainable Knowledge-intensive Analogical Reasoning benchmark (E-KAR). Our benchmark consists of 1,655 (in Chinese) and 1,251 (in English) problems sourced from the Civil Service Exams, which require intensive background knowledge to solve. More importantly, we design a free-text explanation scheme to explain whether an analogy should be drawn, and manually annotate them for each and every question and candidate answer. Empirical results suggest that this benchmark is very challenging for some state-of-the-art models for both explanation generation and analogical question answering tasks, which invites further research in this area.
Text-to-Image Synthesis (TIS) is a popular task to convert natural language texts into realistic images. Recently, transformer-based TIS models (such as DALL-E) have been proposed using the encoder-decoder architectures. Yet, these billion-scale TIS models are difficult to tune and deploy in resource-constrained environments. In addition, there is a lack of language-specific TIS benchmarks for Chinese, together with high-performing models with moderate sizes. In this work, we present ARTIST, A tRansformer-based Chinese Text-to-Image SynThesizer for high-resolution image generation. In ARTIST, the rich linguistic and relational knowledge facts are injected into the model to ensure better model performance without the usage of ultra-large models. We further establish a large-scale Chinese TIS benchmark with the re-production results of state-of-the-art transformer-based TIS models.Results show ARTIST outperforms previous approaches.
Multimodal Entity Linking (MEL) which aims at linking mentions with multimodal contexts to the referent entities from a knowledge base (e.g., Wikipedia), is an essential task for many multimodal applications. Although much attention has been paid to MEL, the shortcomings of existing MEL datasets including limited contextual topics and entity types, simplified mention ambiguity, and restricted availability, have caused great obstacles to the research and application of MEL. In this paper, we present WikiDiverse, a high-quality human-annotated MEL dataset with diversified contextual topics and entity types from Wikinews, which uses Wikipedia as the corresponding knowledge base. A well-tailored annotation procedure is adopted to ensure the quality of the dataset. Based on WikiDiverse, a sequence of well-designed MEL models with intra-modality and inter-modality attentions are implemented, which utilize the visual information of images more adequately than existing MEL models do. Extensive experimental analyses are conducted to investigate the contributions of different modalities in terms of MEL, facilitating the future research on this task.
Simile interpretation is a crucial task in natural language processing. Nowadays, pre-trained language models (PLMs) have achieved state-of-the-art performance on many tasks. However, it remains under-explored whether PLMs can interpret similes or not. In this paper, we investigate the ability of PLMs in simile interpretation by designing a novel task named Simile Property Probing, i.e., to let the PLMs infer the shared properties of similes. We construct our simile property probing datasets from both general textual corpora and human-designed questions, containing 1,633 examples covering seven main categories. Our empirical study based on the constructed datasets shows that PLMs can infer similes’ shared properties while still underperforming humans. To bridge the gap with human performance, we additionally design a knowledge-enhanced training objective by incorporating the simile knowledge into PLMs via knowledge embedding methods. Our method results in a gain of 8.58% in the probing task and 1.37% in the downstream task of sentiment classification. The datasets and code are publicly available at https://github.com/Abbey4799/PLMs-Interpret-Simile.
Recently, multimodal information extraction from social media posts has gained increasing attention in the natural language processing community. Despite their success, current approaches overestimate the significance of images. In this paper, we argue that different social media posts should consider different modalities for multimodal information extraction. Multimodal models cannot always outperform unimodal models. Some posts are more suitable for the multimodal model, while others are more suitable for the unimodal model. Therefore, we propose a general data splitting strategy to divide the social media posts into two sets so that these two sets can achieve better performance under the information extraction models of the corresponding modalities. Specifically, for an information extraction task, we first propose a data discriminator that divides social media posts into a multimodal and a unimodal set. Then we feed these sets into the corresponding models. Finally, we combine the results of these two models to obtain the final extraction results. Due to the lack of explicit knowledge, we use reinforcement learning to train the data discriminator. Experiments on two different multimodal information extraction tasks demonstrate the effectiveness of our method. The source code of this paper can be found in https://github.com/xubodhu/RDS.
Continual relation extraction (CRE) aims to extract relations towards the continuous and iterative arrival of new data, of which the major challenge is the catastrophic forgetting of old tasks. In order to alleviate this critical problem for enhanced CRE performance, we propose a novel Continual Relation Extraction framework with Contrastive Learning, namely CRECL, which is built with a classification network and a prototypical contrastive network to achieve the incremental-class learning of CRE. Specifically, in the contrastive network a given instance is contrasted with the prototype of each candidate relations stored in the memory module. Such contrastive learning scheme ensures the data distributions of all tasks more distinguishable, so as to alleviate the catastrophic forgetting further. Our experiment results not only demonstrate our CRECL’s advantage over the state-of-the-art baselines on two public datasets, but also verify the effectiveness of CRECL’s contrastive learning on improving performance.
Current NLP techniques have been greatly applied in different domains. In this paper, we propose a human-in-the-loop framework for robotic grasping in cluttered scenes, investigating a language interface to the grasping process, which allows the user to intervene by natural language commands. This framework is constructed on a state-of-the-art grasping baseline, where we substitute a scene-graph representation with a text representation of the scene using BERT. Experiments on both simulation and physical robot show that the proposed method outperforms conventional object-agnostic and scene-graph based methods in the literature. In addition, we find that with human intervention, performance can be significantly improved. Our dataset and code are available on our project website https://sites.google.com/view/hitl-grasping-bert.
Semantic parsing converts natural language utterances into structured logical expressions. We consider two such formal representations: Propositional Logic (PL) and First-order Logic (FOL). The paucity of labeled data is a major challenge in this field. In previous works, dual reinforcement learning has been proposed as an approach to reduce dependence on labeled data. However, this method has the following limitations: 1) The reward needs to be set manually and is not applicable to all kinds of logical expressions. 2) The training process easily collapses when models are trained with only the reward from dual reinforcement learning. In this paper, we propose a scoring model to automatically learn a model-based reward, and an effective training strategy based on curriculum learning is further proposed to stabilize the training process. In addition to the technical contribution, a Chinese-PL/FOL dataset is constructed to compensate for the paucity of labeled data in this field. Experimental results show that the proposed method outperforms competitors on several datasets. Furthermore, by introducing PL/FOL generated by our model, the performance of existing Natural Language Inference (NLI) models is further enhanced.
Lexically constrained neural machine translation (NMT) draws much industrial attention for its practical usage in specific domains. However, current autoregressive approaches suffer from high latency. In this paper, we focus on non-autoregressive translation (NAT) for this problem for its efficiency advantage. We identify that current constrained NAT models, which are based on iterative editing, do not handle low-frequency constraints well. To this end, we propose a plug-in algorithm for this line of work, i.e., Aligned Constrained Training (ACT), which alleviates this problem by familiarizing the model with the source-side context of the constraints. Experiments on the general and domain datasets show that our model improves over the backbone constrained NAT model in constraint preservation and translation quality, especially for rare constraints.
Continual learning has gained increasing attention in recent years, thanks to its biological interpretation and efficiency in many real-world applications. As a typical task of continual learning, continual relation extraction (CRE) aims to extract relations between entities from texts, where the samples of different relations are delivered into the model continuously. Some previous works have proved that storing typical samples of old relations in memory can help the model keep a stable understanding of old relations and avoid forgetting them. However, most methods heavily depend on the memory size in that they simply replay these memorized samples in subsequent tasks. To fully utilize memorized samples, in this paper, we employ relation prototype to extract useful information of each relation. Specifically, the prototype embedding for a specific relation is computed based on memorized samples of this relation, which is collected by K-means algorithm. The prototypes of all observed relations at current learning stage are used to re-initialize a memory network to refine subsequent sample embeddings, which ensures the model’s stable understanding on all observed relations when learning a new task. Compared with previous CRE models, our model utilizes the memory information sufficiently and efficiently, resulting in enhanced CRE performance. Our experiments show that the proposed model outperforms the state-of-the-art CRE models and has great advantage in avoiding catastrophic forgetting. The code and datasets are released on https://github.com/fd2014cl/RP-CRE.
Distantly supervision automatically generates plenty of training samples for relation extraction. However, it also incurs two major problems: noisy labels and imbalanced training data. Previous works focus more on reducing wrongly labeled relations (false positives) while few explore the missing relations that are caused by incompleteness of knowledge base (false negatives). Furthermore, the quantity of negative labels overwhelmingly surpasses the positive ones in previous problem formulations. In this paper, we first provide a thorough analysis of the above challenges caused by negative data. Next, we formulate the problem of relation extraction into as a positive unlabeled learning task to alleviate false negative problem. Thirdly, we propose a pipeline approach, dubbed ReRe, that first performs sentence classification with relational labels and then extracts the subjects/objects. Experimental results show that the proposed method consistently outperforms existing approaches and remains excellent performance even learned with a large quantity of false positive samples. Source code is available online at https://github.com/redreamality/RERE-relation-extraction.
Open attribute value extraction for emerging entities is an important but challenging task. A lot of previous works formulate the problem as a question-answering (QA) task. While the collections of articles from web corpus provide updated information about the emerging entities, the retrieved texts can be noisy, irrelevant, thus leading to inaccurate answers. Effectively filtering out noisy articles as well as bad answers is the key to improve extraction accuracy. Knowledge graph (KG), which contains rich, well organized information about entities, provides a good resource to address the challenge. In this work, we propose a knowledge-guided reinforcement learning (RL) framework for open attribute value extraction. Informed by relevant knowledge in KG, we trained a deep Q-network to sequentially compare extracted answers to improve extraction accuracy. The proposed framework is applicable to different information extraction system. Our experimental results show that our method outperforms the baselines by 16.5 - 27.8%.
A type description is a succinct noun compound which helps human and machines to quickly grasp the informative and distinctive information of an entity. Entities in most knowledge graphs (KGs) still lack such descriptions, thus calling for automatic methods to supplement such information. However, existing generative methods either overlook the grammatical structure or make factual mistakes in generated texts. To solve these problems, we propose a head-modifier template based method to ensure the readability and data fidelity of generated type descriptions. We also propose a new dataset and two metrics for this task. Experiments show that our method improves substantially compared with baselines and achieves state-of-the-art performance on both datasets.
Entity alignment aims to find entities in different knowledge graphs (KGs) that refer to the same real-world object. An effective solution for cross-lingual entity alignment is crucial for many cross-lingual AI and NLP applications. Recently many embedding-based approaches were proposed for cross-lingual entity alignment. However, almost all of them are based on TransE or its variants, which have been demonstrated by many studies to be unsuitable for encoding multi-mapping relations such as 1-N, N-1 and N-N relations, thus these methods obtain low alignment precision. To solve this issue, we propose a new embedding-based framework. Through defining dot product-based functions over embeddings, our model can better capture the semantics of both 1-1 and multi-mapping relations. We calibrate embeddings of different KGs via a small set of pre-aligned seeds. We also propose a weighted negative sampling strategy to generate valuable negative samples during training and we regard prediction as a bidirectional problem in the end. Experimental results (especially with the metric Hits@1) on real-world multilingual datasets show that our approach significantly outperforms many other embedding-based approaches with state-of-the-art performance.