This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Prompt learning is a new paradigm for utilizing pre-trained language models and has achieved great success in many tasks. To adopt prompt learning in the NER task, two kinds of methods have been explored from a pair of symmetric perspectives, populating the template by enumerating spans to predict their entity types or constructing type-specific prompts to locate entities. However, these methods not only require a multi-round prompting manner with a high time overhead and computational cost, but also require elaborate prompt templates, that are difficult to apply in practical scenarios. In this paper, we unify entity locating and entity typing into prompt learning, and design a dual-slot multi-prompt template with the position slot and type slot to prompt locating and typing respectively. Multiple prompts can be input to the model simultaneously, and then the model extracts all entities by parallel predictions on the slots. To assign labels for the slots during training, we design a dynamic template filling mechanism that uses the extended bipartite graph matching between prompts and the ground-truth entities. We conduct experiments in various settings, including resource-rich flat and nested NER datasets and low-resource in-domain and cross-domain datasets. Experimental results show that the proposed model achieves a significant performance improvement, especially in the cross-domain few-shot setting, which outperforms the state-of-the-art model by +7.7% on average.
As neural Text Generation Models (TGM) have become more and more capable of generating text indistinguishable from human-written ones, the misuse of text generation technologies can have serious ramifications. Although a neural classifier often achieves high detection accuracy, the reason for it is not well studied. Most previous work revolves around studying the impact of model structure and the decoding strategy on ease of detection, but little work has been done to analyze the forms of artifacts left by the TGM. We propose to systematically study the forms and scopes of artifacts by corrupting texts, replacing them with linguistic or statistical features, and applying the interpretable method of Integrated Gradients. Comprehensive experiments show artifacts a) primarily relate to token co-occurrence, b) feature more heavily at the head of vocabulary, c) appear more in content word than stopwords, d) are sometimes detrimental in the form of number of token occurrences, e) are less likely to exist in high-level semantics or syntaxes, f) manifest in low concreteness values for higher-order n-grams.
Improving the coherence of long text generation is an important but challenging task. Existing models still struggle to generate a logical and coherent sentence sequence. It is difficult for a model to plan long text generation and avoid generating incoherent texts from a high-level semantic perspective. We speculate that this is due to two factors: (1) current training methods mainly rely on maximum likelihood estimation computed from token-level probability prediction; (2) the role of incoherent texts has been largely under-explored, thus the noised generated texts with errors are out-of-distribution for the model. To address these issues, in this paper, we propose a Contrastive Soft Prompt (CSP) model for improving the coherence of long text generation. It learns text representations in the hidden space for better planning long text generation. To this end, it jointly learns to generate a text representation close to representations of coherent texts and away from incoherent ones, and then generate long text taking this representation as the soft prompt. We conduct experiments on two public story generation datasets, and experiment results show that our method can generate more coherent stories than the state-of-the-art model.
Since 2017, the Transformer-based models play critical roles in various downstream Natural Language Processing tasks. However, a common limitation of the attention mechanism utilized in Transformer Encoder is that it cannot automatically capture the information of word order, so explicit position embeddings are generally required to be fed into the target model. In contrast, Transformer Decoder with the causal attention masks is naturally sensitive to the word order. In this work, we focus on improving the position encoding ability of BERT with the causal attention masks. Furthermore, we propose a new pre-trained language model DecBERT and evaluate it on the GLUE benchmark. Experimental results show that (1) the causal attention mask is effective for BERT on the language understanding tasks; (2) our DecBERT model without position embeddings achieve comparable performance on the GLUE benchmark; and (3) our modification accelerates the pre-training process and DecBERT w/ PE achieves better overall performance than the baseline systems when pre-training with the same amount of computational resources.
Image-text retrieval is a fundamental cross-modal task that takes image/text as a query to retrieve relevant data of another type. The large-scale two-stream pre-trained models like CLIP have achieved tremendous success in this area. They embed the images and texts into instance representations with two separate encoders, aligning them on the instance-level with contrastive learning. Beyond this, the following works adopt the fine-grained token-level interaction (Masked Language and Image Modeling) to boost performance further. However, the vanilla token-level objectives are not designed to aggregate the image-text alignment information into the instance representations, but the token representations, causing a gap between pre-training and application. To address this issue, we carefully design two novel conditioned token-level pre-training objectives, Conditioned Masked Language and Image Modeling (ConMLM and ConMIM), forcing models to aggregate the token-level alignment information into the instance representations. Combing with the instance-level contrastive learning, we propose our cross-modal dense retrieval framework, Conditioned Language-Image Pre-training (ConLIP). Experimental results on two popular cross-modal retrieval benchmarks (MSCOCO and Flickr30k) reveal the effectiveness of our methods.
Simile interpretation (SI) and simile generation (SG) are challenging tasks for NLP because models require adequate world knowledge to produce predictions. Previous works have employed many hand-crafted resources to bring knowledge-related into models, which is time-consuming and labor-intensive. In recent years, pre-trained language models (PLMs) based approaches have become the de-facto standard in NLP since they learn generic knowledge from a large corpus. The knowledge embedded in PLMs may be useful for SI and SG tasks. Nevertheless, there are few works to explore it. In this paper, we probe simile knowledge from PLMs to solve the SI and SG tasks in the unified framework of simile triple completion for the first time. The backbone of our framework is to construct masked sentences with manual patterns and then predict the candidate words in the masked position. In this framework, we adopt a secondary training process (Adjective-Noun mask Training) with the masked language model (MLM) loss to enhance the prediction diversity of candidate words in the masked position. Moreover, pattern ensemble (PE) and pattern search (PS) are applied to improve the quality of predicted words. Finally, automatic and human evaluations demonstrate the effectiveness of our framework in both SI and SG tasks.
Recently, large-scale transformer-based models have been proven to be effective over various tasks across many domains. Nevertheless, applying them in industrial production requires tedious and heavy works to reduce inference costs. To fill such a gap, we introduce a scalable inference solution: Easy and Efficient Transformer (EET), including a series of transformer inference optimization at the algorithm and implementation levels. First, we design highly optimized kernels for long inputs and large hidden sizes. Second, we propose a flexible CUDA memory manager to reduce the memory footprint when deploying a large model. Compared with the state-of-the-art transformer inference library (Faster Transformer v4.0), EET can achieve an average of 1.40-4.20x speedup on the transformer decoder layer with an A100 GPU.
There is a long history of research related to automated story generation, dating back as far as the 1970s. Recently, the rapid development of pre-trained language models has spurred great progresses in this field. Equipped with GPT-2 and the latest GPT-3, AI Dungeon has been seen as a famous example of the powerful text generation capabilities of large-scale pre-trained language models, and a possibility for future games. However, as a game, AI Dungeon lacks incentives to players and relies entirely on players to explore on their own. This makes players’ enthusiasm decline rapidly. In this paper, we present an open-ended text adventure game in Chinese, named as KuiLeiXi. In KuiLeiXi, players need to interact with the AI until the pre-determined plot goals are reached. By introducing the plot goals, players have a stronger incentive to explore ways to reach plot goals, while the AI’s abilities are not abused to generate harmful contents. This limited freedom allows this game to be integrated as a part of a romance simulation mobile game, Yu Jian Love. Since KuiLeiXi was launched, it has received a lot of positive feedbacks from more than 100,000 players. A demo video is available at https://youtu.be/DyYZhxMRrkk.
Recent advances in open-domain dialogue systems rely on the success of neural models that are trained on large-scale data. However, collecting large-scale dialogue data is usually time-consuming and labor-intensive. To address this data dilemma, we propose a novel data augmentation method for training open-domain dialogue models by utilizing unpaired data. Specifically, a data-level distillation process is first proposed to construct augmented dialogues where both post and response are retrieved from the unpaired data. A ranking module is employed to filter out low-quality dialogues. Further, a model-level distillation process is employed to distill a teacher model trained on high-quality paired data to augmented dialogue pairs, thereby preventing dialogue models from being affected by the noise in the augmented data. Automatic and manual evaluation indicates that our method can produce high-quality dialogue pairs with diverse contents, and the proposed data-level and model-level dialogue distillation can improve the performance of competitive baselines.
Recently, a variety of neural models have been proposed for lyrics generation. However, most previous work completes the generation process in a single pass with little human intervention. We believe that lyrics creation is a creative process with human intelligence centered. AI should play a role as an assistant in the lyrics creation process, where human interactions are crucial for high-quality creation. This paper demonstrates Youling, an AI-assisted lyrics creation system, designed to collaborate with music creators. In the lyrics generation process, Youling supports traditional one pass full-text generation mode as well as an interactive generation mode, which allows users to select the satisfactory sentences from generated candidates conditioned on preceding context. The system also provides a revision module which enables users to revise undesired sentences or words of lyrics repeatedly. Besides, Youling allows users to use multifaceted attributes to control the content and format of generated lyrics. The demo video of the system is available at https://youtu.be/DFeNpHk0pm4.