Xu Huang


2024

pdf
Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation
Xu Huang | Zhirui Zhang | Xiang Geng | Yichao Du | Jiajun Chen | Shujian Huang
Findings of the Association for Computational Linguistics ACL 2024

This study investigates how Large Language Models (LLMs) leverage source and reference data in machine translation evaluation task, aiming to better understand the mechanisms behind their remarkable performance in this task.We design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information.We find that reference information significantly enhances the evaluation accuracy, while surprisingly, source information sometimes is counterproductive, indicating LLMs’ inability to fully leverage the cross-lingual capability when evaluating translations.Further analysis of the fine-grained evaluation and fine-tuning experiments show similar results.These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks.

pdf
EDDA: An Encoder-Decoder Data Augmentation Framework for Zero-Shot Stance Detection
Daijun Ding | Li Dong | Zhichao Huang | Guangning Xu | Xu Huang | Bo Liu | Liwen Jing | Bowen Zhang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Stance detection aims to determine the attitude expressed in text towards a given target. Zero-shot stance detection (ZSSD) has emerged to classify stances towards unseen targets during inference. Recent data augmentation techniques for ZSSD increase transferable knowledge between targets through text or target augmentation. However, these methods exhibit limitations. Target augmentation lacks logical connections between generated targets and source text, while text augmentation relies solely on training data, resulting in insufficient generalization. To address these issues, we propose an encoder-decoder data augmentation (EDDA) framework. The encoder leverages large language models and chain-of-thought prompting to summarize texts into target-specific if-then rationales, establishing logical relationships. The decoder generates new samples based on these expressions using a semantic correlation word replacement strategy to increase syntactic diversity. We also analyze the generated expressions to develop a rationale-enhanced network that fully utilizes the augmented data. Experiments on benchmark datasets demonstrate our approach substantially improves over state-of-the-art ZSSD techniques. The proposed EDDA framework increases semantic relevance and syntactic variety in augmented texts while enabling interpretable rationale-based learning.

2023

pdf
IMTLab: An Open-Source Platform for Building, Evaluating, and Diagnosing Interactive Machine Translation Systems
Xu Huang | Zhirui Zhang | Ruize Gao | Yichao Du | Lemao Liu | Guoping Huang | Shuming Shi | Jiajun Chen | Shujian Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We present IMTLab, an open-source end-to-end interactive machine translation (IMT) system platform that enables researchers to quickly build IMT systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. IMTLab treats the whole interactive translation process as a task-oriented dialogue with a human-in-the-loop setting, in which human interventions can be explicitly incorporated to produce high-quality, error-free translations. To this end, a general communication interface is designed to support the flexible IMT architectures and user policies. Based on the proposed design, we construct a simulated and real interactive environment to achieve end-to-end evaluation and leverage the framework to systematically evaluate previous IMT systems. Our simulated and manual experiments show that the prefix-constrained decoding approach still gains the lowest editing cost in the end-to-end evaluation, while BiTIIMT achieves comparable editing cost with a better interactive experience.

2022

pdf
Sentiment Interpretable Logic Tensor Network for Aspect-Term Sentiment Analysis
Bowen Zhang | Xu Huang | Zhichao Huang | Hu Huang | Baoquan Zhang | Xianghua Fu | Liwen Jing
Proceedings of the 29th International Conference on Computational Linguistics

Aspect-term sentiment analysis (ATSA) is an important task that aims to infer the sentiment towards the given aspect-terms. It is often required in the industry that ATSA should be performed with interpretability, computational efficiency and high accuracy. However, such an ATSA method has not yet been developed. This study aims to develop an ATSA method that fulfills all these requirements. To achieve the goal, we propose a novel Sentiment Interpretable Logic Tensor Network (SILTN). SILTN is interpretable because it is a neurosymbolic formalism and a computational model that supports learning and reasoning about data with a differentiable first-order logic language (FOL). To realize SILTN with high inferring accuracy, we propose a novel learning strategy called the two-stage syntax knowledge distillation (TSynKD). Using widely used datasets, we experimentally demonstrate that the proposed TSynKD is effective for improving the accuracy of SILTN, and the SILTN has both high interpretability and computational efficiency.