Xingyu Fu


2024

pdf
Deceptive Semantic Shortcuts on Reasoning Chains: How Far Can Models Go without Hallucination?
Bangzheng Li | Ben Zhou | Fei Wang | Xingyu Fu | Dan Roth | Muhao Chen
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Despite the high performances of large language models (LLMs) across numerous benchmarks, recent research has unveiled their suffering from hallucinations and unfaithful reasoning. This work studies a type of hallucination induced by semantic associations. We investigate to what extent LLMs take shortcuts from certain keyword/entity biases in the prompt instead of following correct reasoning paths. To quantify this phenomenon, we propose a novel probing method and benchmark called EUREQA. EUREQA is an entity-searching task where a model finds a missing entity based on described multi-hop relations with other entities. These deliberately designed multi-hop relations create deceptive semantic associations, and models must stick to the correct reasoning path instead of incorrect shortcuts to find the correct answer.Experiments show that existing LLMs cannot follow correct reasoning paths and resist the attempt of greedy shortcuts, with GPT-4 only achieving 62% accuracy. Analyses provide further evidence that LLMs rely on semantic biases to solve the task instead of proper reasoning, questioning the validity and generalizability of current LLMs’ high performances.

2023

pdf
Generate then Select: Open-ended Visual Question Answering Guided by World Knowledge
Xingyu Fu | Sheng Zhang | Gukyeong Kwon | Pramuditha Perera | Henghui Zhu | Yuhao Zhang | Alexander Hanbo Li | William Yang Wang | Zhiguo Wang | Vittorio Castelli | Patrick Ng | Dan Roth | Bing Xiang
Findings of the Association for Computational Linguistics: ACL 2023

The open-ended Visual Question Answering (VQA) task requires AI models to jointly reason over visual and natural language inputs using world knowledge. Recently, pre-trained Language Models (PLM) such as GPT-3 have been applied to the task and shown to be powerful world knowledge sources. However, these methods suffer from low knowledge coverage caused by PLM bias – the tendency to generate certain tokens over other tokens regardless of prompt changes, and high dependency on the PLM quality – only models using GPT-3 can achieve the best result. To address the aforementioned challenges, we propose RASO: a new VQA pipeline that deploys a generate-then-select strategy guided by world knowledge for the first time. Rather than following the de facto standard to train a multi-modal model that directly generates the VQA answer, {pasted macro ‘MODEL’}name first adopts PLM to generate all the possible answers, and then trains a lightweight answer selection model for the correct answer. As proved in our analysis, RASO expands the knowledge coverage from in-domain training data by a large margin. We provide extensive experimentation and show the effectiveness of our pipeline by advancing the state-of-the-art by 4.1% on OK-VQA, without additional computation cost.

2022

pdf
There’s a Time and Place for Reasoning Beyond the Image
Xingyu Fu | Ben Zhou | Ishaan Chandratreya | Carl Vondrick | Dan Roth
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Images are often more significant than only the pixels to human eyes, as we can infer, associate, and reason with contextual information from other sources to establish a more complete picture. For example, in Figure 1, we can find a way to identify the news articles related to the picture through segment-wise understandings of the signs, the buildings, the crowds, and more. This reasoning could provide the time and place the image was taken, which will help us in subsequent tasks, such as automatic storyline construction, correction of image source in intended effect photographs, and upper-stream processing such as image clustering for certain location or time. In this work, we formulate this problem and introduce TARA: a dataset with 16k images with their associated news, time, and location, automatically extracted from New York Times, and an additional 61k examples as distant supervision from WIT. On top of the extractions, we present a crowdsourced subset in which we believe it is possible to find the images’ spatio-temporal information for evaluation purpose. We show that there exists a 70% gap between a state-of-the-art joint model and human performance, which is slightly filled by our proposed model that uses segment-wise reasoning, motivating higher-level vision-language joint models that can conduct open-ended reasoning with world knowledge. The data and code are publicly available at https://github.com/zeyofu/TARA.

2020

pdf
Design Challenges in Low-resource Cross-lingual Entity Linking
Xingyu Fu | Weijia Shi | Xiaodong Yu | Zian Zhao | Dan Roth
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Cross-lingual Entity Linking (XEL), the problem of grounding mentions of entities in a foreign language text into an English knowledge base such as Wikipedia, has seen a lot of research in recent years, with a range of promising techniques. However, current techniques do not rise to the challenges introduced by text in low-resource languages (LRL) and, surprisingly, fail to generalize to text not taken from Wikipedia, on which they are usually trained. This paper provides a thorough analysis of low-resource XEL techniques, focusing on the key step of identifying candidate English Wikipedia titles that correspond to a given foreign language mention. Our analysis indicates that current methods are limited by their reliance on Wikipedia’s interlanguage links and thus suffer when the foreign language’s Wikipedia is small. We conclude that the LRL setting requires the use of outside-Wikipedia cross-lingual resources and present a simple yet effective zero-shot XEL system, QuEL, that utilizes search engines query logs. With experiments on 25 languages, QuEL shows an average increase of 25% in gold candidate recall and of 13% in end-to-end linking accuracy over state-of-the-art baselines.

2019

pdf
Constrained Sequence-to-sequence Semitic Root Extraction for Enriching Word Embeddings
Ahmed El-Kishky | Xingyu Fu | Aseel Addawood | Nahil Sobh | Clare Voss | Jiawei Han
Proceedings of the Fourth Arabic Natural Language Processing Workshop

In this paper, we tackle the problem of “root extraction” from words in the Semitic language family. A challenge in applying natural language processing techniques to these languages is the data sparsity problem that arises from their rich internal morphology, where the substructure is inherently non-concatenative and morphemes are interdigitated in word formation. While previous automated methods have relied on human-curated rules or multiclass classification, they have not fully leveraged the various combinations of regular, sequential concatenative morphology within the words and the internal interleaving within templatic stems of roots and patterns. To address this, we propose a constrained sequence-to-sequence root extraction method. Experimental results show our constrained model outperforms a variety of methods at root extraction. Furthermore, by enriching word embeddings with resulting decompositions, we show improved results on word analogy, word similarity, and language modeling tasks.