This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
There exists a discrepancy between the token-level objective during training and the overall sequence-level quality that is expected from the model. This discrepancy leads to issues like exposure bias.To align the model with human expectations, sequence-level objectives are often used to fine-tune pre-trained models.In this paper, we introduce a contrastive preference model that enhances the traditional Plackett-Luce model by incorporating an indicator function. Building upon this novel preference model, we propose Contrastive Preference Learning (CPL), which uses offline samples with list-wise preferences to fine-tune a pre-trained model in Neural Machine Translation. Our experiments, conducted on three language pairs, demonstrate that CPL outperforms not only the vanilla Transformer model but also other token-level and sequence-level baselines. Furthermore, the ablation study highlights the essential role of the proposed indicator function in achieving this improvement.
Emotional support conversation systems are designed to alleviate users’ emotional distress and assist them in overcoming their challenges. While previous studies have made progress, their models occasionally generate unhelpful responses, which are intended to be supportive but instead have counterproductive effects. Since unhelpful responses can hinder the effectiveness of emotional support, it is crucial to mitigate them within conversations. Our solution is motivated by two principal considerations: (1) multiple facets of emotional support are expected to be considered when developing emotional support conversation models, and (2) directly reducing the probability of generating unhelpful responses can effectively mitigate their occurrence. Accordingly, we introduce a novel model-agnostic framework named ̲Mitigating ̲unhelpfulness with multifaceted AI ̲feedback for emot ̲io ̲nal support (Muffin). It first employs a multifaceted AI feedback module designed to assess the helpfulness model responses across various facets of emotional support. Leveraging contrastive learning, Muffin then reduces the unhelpful responses’ likelihoods. To validate the effectiveness of our proposed framework, we apply Muffin to various previous emotional support generation models, including the state-of-the-art. Experimental results demonstrate that Muffin can significantly mitigate unhelpful response generation while enhancing response fluency and relevance.
Medical dialogue systems have attracted significant attention for their potential to act as medical assistants. Enabling these medical systems to emulate clinicians’ diagnostic reasoning process has been the long-standing research focus. Previous studies rudimentarily realized the simulation of clinicians’ diagnostic process by fine-tuning language models on high-quality dialogue datasets. Nonetheless, they overly focus on the outcomes of the clinician’s reasoning process while ignoring their internal thought processes and alignment with clinician preferences. Our work aims to build a medical dialogue system that aligns with clinicians’ diagnostic reasoning processes. We propose a novel framework, Emulation, designed to generate an appropriate response that relies on abductive and deductive diagnostic reasoning analyses and aligns with clinician preferences through thought process modeling. Experimental results on two datasets confirm the efficacy of Emulation. Crucially, our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
Large language models (LLMs) have demonstrated the capacity to improve summary quality by mirroring a human-like iterative process of critique and refinement starting from the initial draft. Two strategies are designed to perform this iterative process: Prompt Chaining and Stepwise Prompt. Prompt chaining orchestrates the drafting, critiquing, and refining phases through a series of three discrete prompts, while Stepwise prompt integrates these phases within a single prompt. However, the relative effectiveness of the two methods has not been extensively studied. This paper is dedicated to examining and comparing these two methods in the context of text summarization to ascertain which method stands out as the most effective. Experimental results show that the prompt chaining method can produce a more favorable outcome. This might be because stepwise prompt might produce a simulated refinement process according to our various experiments. Since refinement is adaptable to diverse tasks, our conclusions have the potential to be extrapolated to other applications, thereby offering insights that may contribute to the broader development of LLMs.
To mitigate the high inference latency stemming from autoregressive decoding in Large Language Models (LLMs), Speculative Decoding has emerged as a novel decoding paradigm for LLM inference. In each decoding step, this method first drafts several future tokens efficiently and then verifies them in parallel. Unlike autoregressive decoding, Speculative Decoding facilitates the simultaneous decoding of multiple tokens per step, thereby accelerating inference. This paper presents a comprehensive overview and analysis of this promising decoding paradigm. We begin by providing a formal definition and formulation of Speculative Decoding. Then, we organize in-depth discussions on its key facets, such as drafter selection and verification strategies. Furthermore, we present a comparative analysis of leading methods under third-party testing environments. We aim for this work to serve as a catalyst for further research on Speculative Decoding, ultimately contributing to more efficient LLM inference.
Critique, as a natural language description for assessing the quality of model-generated content, has played a vital role in the training, evaluation, and refinement of LLMs. However, a systematic method to evaluate the quality of critique is lacking. In this paper, we pioneer the critique of critique, termed MetaCritique, which builds specific quantification criteria. To achieve a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique aggregates each AIU’s judgment for the overall score. Moreover, MetaCritique delivers a natural language rationale for the intricate reasoning within each judgment. Lastly, we construct a meta-evaluation dataset covering 4 tasks across 16 public datasets involving human-written and LLM-generated critiques. Experiments demonstrate that MetaCritique can achieve near-human performance. Our study can facilitate future research in LLM critiques based on our following observations and released resources: (1) superior critiques judged by MetaCritique can lead to better refinements, indicating that it can potentially enhance the alignment of existing LLMs; (2) the leaderboard of critique models reveals that open-source critique models commonly suffer from factuality issues; (3) relevant code and data are publicly available at https://anonymous.4open.science/r/MetaCritique-ARR/ to support deeper exploration; (4) an API at PyPI with the usage documentation in Appendix C allows users to assess the critique conveniently.
Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target. This paradigm leverages powerful generative language models, distinct from traditional sparse or dense retrieval methods. In this work, we identify a viable direction to further enhance generative retrieval via distillation and propose a feasible framework, named DGR. DGR utilizes sophisticated ranking models, such as the cross-encoder, in a teacher role to supply a passage rank list, which captures the varying relevance degrees of passages instead of binary hard labels; subsequently, DGR employs a specially designed distilled RankNet loss to optimize the generative retrieval model, considering the passage rank order provided by the teacher model as labels. This framework only requires an additional distillation step to enhance current generative retrieval systems and does not add any burden to the inference stage. We conduct experiments on four public datasets, and the results indicate that DGR achieves state-of-the-art performance among the generative retrieval methods. Additionally, DGR demonstrates exceptional robustness and generalizability with various teacher models and distillation losses.
Tuning language models for dialogue generation has been a prevalent paradigm for building capable dialogue agents. Yet, traditional tuning narrowly views dialogue generation as resembling other language generation tasks, ignoring the role disparities between two speakers and the multi-round interactive process that dialogues ought to be. Such a manner often leads to unsatisfactory chat consistency for the built agent. In this work, we emphasize the interactive, communicative nature of dialogue and argue that it is more feasible to model the speaker roles of agent and user separately, enabling the agent to adhere to its role consistently. With this in mind, we propose an efficient Multi-round Interactive Dialogue Tuning (Midi-Tuning) framework. It models the agent and user individually with two adapters built upon large language models. The adapters make use of respective utterances round by round in alternating order and they are tuned via a round-level memory caching mechanism. Extensive experiments demonstrate that, our framework performs superior to traditional fine-tuning and harbors the tremendous potential for improving dialogue consistency.
A major challenge for narrative reasoning is to learn narrative coherence. Existing works mainly follow the contrastive learning paradigm. However, the negative samples in their methods can be easily distinguished, which makes their methods unsatisfactory. In this work, we devise two strategies for mining hard negatives, including (1) crisscrossing a narrative and its contrastive variants; and (2) event-level replacement. To obtain contrastive variants, we utilize the Brownian Bridge process to guarantee the quality of generated contrastive narratives. We evaluate our model on several tasks. The result proves the effectiveness of our method, and shows that our method is applicable to many applications.
Counterfactual reasoning in narratives requires predicting how alternative conditions, contrary to what actually happened, might have resulted in different outcomes.One major challenge is to maintain the causality between the counterfactual condition and the generated counterfactual outcome. In this paper, we propose a basic VAE module for counterfactual reasoning in narratives. We further introduce a pre-trained classifier and external event commonsense to mitigate the posterior collapse problem in the VAE approach, and improve the causality between the counterfactual condition and the generated counterfactual outcome. We evaluate our method on two public benchmarks. Experiments show that our method is effective.
The recent advancements in generative language models have demonstrated their ability to memorize knowledge from documents and recall knowledge to respond to user queries effectively. Building upon this capability, we propose to enable multimodal large language models (MLLMs) to memorize and recall images within their parameters. Given a user query for visual content, the MLLM is anticipated to “recall” the relevant image from its parameters as the response. Achieving this target presents notable challenges, including inbuilt visual memory and visual recall schemes within MLLMs. To address these challenges, we introduce a generative cross-modal retrieval framework, which assigns unique identifier strings to represent images and involves two training steps: learning to memorize and learning to retrieve. The first step focuses on training the MLLM to memorize the association between images and their respective identifiers. The latter step teaches the MLLM to generate the corresponding identifier of the target image, given the textual query input. By memorizing images in MLLMs, we introduce a new paradigm to cross-modal retrieval, distinct from previous discriminative approaches. The experiments demonstrate that the generative paradigm performs effectively and efficiently even with large-scale image candidate sets.
In Neural Machine Translation, models are often trained with teacher forcing and suffer from exposure bias due to the discrepancy between training and inference. Current token-level solutions, such as scheduled sampling, aim to maximize the model’s capability to recover from errors. Their loss functions have a side effect: a sequence with errors may have a larger probability than the ground truth. The consequence is that the generated sequences may recover too much and deviate from the ground truth. This side effect is verified in our experiments. To address this issue, we propose using token-level contrastive learning to coordinate three training objectives: the usual MLE objective, an objective for recovery from errors, and a new objective to explicitly constrain the recovery in a scope that does not impact the ground truth. Our empirical analysis shows that this method effectively achieves these objectives in training and reduces the frequency with which the third objective is violated. We conduct experiments on three language pairs: German-English, Russian-English, and English-Russian. Results show that our method outperforms the vanilla Transformer and other methods addressing the exposure bias.
Goal-directed dialogue systems aim to proactively reach a pre-determined target through multi-turn conversations. The key to achieving this task lies in planning dialogue paths that smoothly and coherently direct conversations towards the target. However, this is a challenging and under-explored task. In this work, we propose a coherent dialogue planning approach that uses a stochastic process to model the temporal dynamics of dialogue paths. We define a latent space that captures the coherence of goal-directed behavior using a Brownian bridge process, which allows us to incorporate user feedback flexibly in dialogue planning. Based on the derived latent trajectories, we generate dialogue paths explicitly using pre-trained language models. We finally employ these paths as natural language prompts to guide dialogue generation. Our experiments show that our approach generates more coherent utterances and achieves the goal with a higher success rate.
Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription. Since most patients cannot precisely describe their symptoms, dialogue understanding is challenging for MDS. Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information. In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor’s dialogue acts in each turn, as they help the understanding of how the dialogue flows and enhance the prediction of the entities and dialogue acts to be adopted in the following turn. Correspondingly, we propose a Dual Flow enhanced Medical (DFMed) dialogue generation framework. It extracts the medical entities and dialogue acts used in the dialogue history and models their transitions with an entity-centric graph flow and a sequential act flow, respectively. We employ two sequential models to encode them and devise an interweaving component to enhance their interactions. Experiments on two datasets demonstrate that our method exceeds baselines in both automatic and manual evaluations.
Extractive summarization aims to select a set of salient sentences from the source document to form a summary. Context information has been considered one of the key factors for this task. Meanwhile, there also exist other pattern factors that can identify sentence importance, such as sentence position or certain n-gram tokens. However, such pattern information is only effective in specific datasets or domains and can not be generalized like the context information when there only exists limited data. In this case, current extractive summarization models may suffer from a performance drop when transferring to a new dataset. In this paper, we attempt to apply disentangled representation learning on extractive summarization, and separate the two key factors for the task, context and pattern, for a better generalization ability in the low-resource setting. To achieve this, we propose two groups of losses for encoding and disentangling sentence representations into context representations and pattern representations. In this case, we can either use only the context information in the zero-shot setting or fine-tune the pattern information in the few-shot setting. Experimental results on three summarization datasets from different domains show the effectiveness of our proposed approach.
Automating radiology report generation can significantly alleviate radiologists’ workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient’s current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.
Abstractive Text Summarization (ATS) models are commonly trained using large-scale data that is randomly shuffled. However, the impact of data selection and data ordering on ATS models remains a relatively unexplored research area, where a significant challenge lies in accurately assessing the learning difficulty of each training instance. This study introduces a Data Selection Curriculum (DSC) scoring system that incorporates both the difficulty of improving ATS model via an instance and the expected performance on this instance. By selectively excluding excessively simple and overly complex instances, the training efficiency can be optimized. Furthermore, curriculum learning is integrated to accelerate convergence and improve performance by gradually increasing the learning difficulty, inspired by human learners. Experimental results on the CNN/DailyMail dataset demonstrate that our approach surpasses potent baselines, utilizing a mere 20% of the available instances.
Most biomedical pretrained language models are monolingual and cannot handle the growing cross-lingual requirements. The scarcity of non-English domain corpora, not to mention parallel data, poses a significant hurdle in training multilingual biomedical models. Since knowledge forms the core of domain-specific corpora and can be translated into various languages accurately, we propose a model called KBioXLM, which transforms the multilingual pretrained model XLM-R into the biomedical domain using a knowledge-anchored approach. We achieve a biomedical multilingual corpus by incorporating three granularity knowledge alignments (entity, fact, and passage levels) into monolingual corpora. Then we design three corresponding training tasks (entity masking, relation masking, and passage relation prediction) and continue training on top of the XLM-R model to enhance its domain cross-lingual ability. To validate the effectiveness of our model, we translate the English benchmarks of multiple tasks into Chinese. Experimental results demonstrate that our model significantly outperforms monolingual and multilingual pretrained models in cross-lingual zero-shot and few-shot scenarios, achieving improvements of up to 10+ points.
Beam search is the most popular decoding method for Neural Machine Translation (NMT) and is still a strong baseline compared with the newly proposed sampling-based methods. To better understand beam search, we investigate its two well-recognized issues, beam search curse and search errors, at the sentence level. We find that only less than 30% of sentences in the test set experience these issues. Meanwhile, there is a related phenomenon. For the majority of sentences, their gold references have lower probabilities than the predictions from beam search. We also test with different levels of model errors including a special test using training samples and models without regularization. We find that these phenomena still exist even for a model with an accuracy of 95% although they are mitigated. These findings show that it is not promising to improve beam search by seeking higher probabilities in searching and further reducing its search errors. The relationship between the quality and the probability of predictions at the sentence level in our results provides useful information to find new ways to improve NMT.
Target-oriented dialogue systems, designed to proactively steer conversations toward predefined targets or accomplish specific system-side goals, are an exciting area in conversational AI. In this work, by formulating a <dialogue act, topic> pair as the conversation target, we explore a novel problem of personalized target-oriented dialogue by considering personalization during the target accomplishment process. However, there remains an emergent need for high-quality datasets, and building one from scratch requires tremendous human effort. To address this, we propose an automatic dataset curation framework using a role-playing approach. Based on this framework, we construct a large-scale personalized target-oriented dialogue dataset, TopDial, which comprises about 18K multi-turn dialogues. The experimental results show that this dataset is of high quality and could contribute to exploring personalized target-oriented dialogue.
Language features are evolving in real-world social media, resulting in the deteriorating performance of text classification in dynamics. To address this challenge, we study temporal adaptation, where models trained on past data are tested in the future. Most prior work focused on continued pretraining or knowledge updating, which may compromise their performance on noisy social media data. To tackle this issue, we reflect feature change via modeling latent topic evolution and propose a novel model, VIBE: Variational Information Bottleneck for Evolutions. Concretely, we first employ two Information Bottleneck (IB) regularizers to distinguish past and future topics. Then, the distinguished topics work as adaptive features via multi-task training with timestamp and class label prediction. In adaptive learning, VIBE utilizes retrieved unlabeled data from online streams created posterior to training data time. Substantial Twitter experiments on three classification tasks show that our model, with only 3% of data, significantly outperforms previous state-of-the-art continued-pretraining methods.
Language model detoxification aims to minimize the risk of generating offensive or harmful content in pretrained language models (PLMs) for safer deployment. Existing methods can be roughly categorized as finetuning-based and decoding-based. However, the former is often resource-intensive, while the latter relies on additional components and potentially compromises the generation fluency. In this paper, we propose a more lightweight approach that enables the PLM itself to achieve “self-detoxification”. Our method is built upon the observation that prepending a negative steering prompt can effectively induce PLMs to generate toxic content. At the same time, we are inspired by the recent research in the interpretability field, which formulates the evolving contextualized representations within the PLM as an information stream facilitated by the attention layers. Drawing on this idea, we devise a method to identify the toxification direction from the normal generation process to the one prompted with the negative prefix, and then steer the generation to the reversed direction by manipulating the information movement within the attention layers. Experimental results show that our approach, without any fine-tuning or extra components, can achieve comparable performance with state-of-the-art methods.
Instead of simply matching a query to pre-existing passages, generative retrieval generates identifier strings of passages as the retrieval target. At a cost, the identifier must be distinctive enough to represent a passage. Current approaches use either a numeric ID or a text piece (such as a title or substrings) as the identifier. However, these identifiers cannot cover a passage’s content well. As such, we are motivated to propose a new type of identifier, synthetic identifiers, that are generated based on the content of a passage and could integrate contextualized information that text pieces lack. Furthermore, we simultaneously consider multiview identifiers, including synthetic identifiers, titles, and substrings. These views of identifiers complement each other and facilitate the holistic ranking of passages from multiple perspectives. We conduct a series of experiments on three public datasets, and the results indicate that our proposed approach performs the best in generative retrieval, demonstrating its effectiveness and robustness.
This paper explores the task of radiology report generation, which aims at generating free-text descriptions for a set of radiographs. One significant challenge of this task is how to correctly maintain the consistency between the images and the lengthy report. Previous research explored solving this issue through planning-based methods, which generate reports only based on high-level plans. However, these plans usually only contain the major observations from the radiographs (e.g., lung opacity), lacking much necessary information, such as the observation characteristics and preliminary clinical diagnoses. To address this problem, the system should also take the image information into account together with the textual plan and perform stronger reasoning during the generation process. In this paper, we propose an Observation-guided radiology Report Generation framework (ORGan). It first produces an observation plan and then feeds both the plan and radiographs for report generation, where an observation graph and a tree reasoning mechanism are adopted to precisely enrich the plan information by capturing the multi-formats of each observation. Experimental results demonstrate that our framework outperforms previous state-of-the-art methods regarding text quality and clinical efficacy.
Existing methods for event causality identification (ECI) focus on mining potential causal signals, i.e., causal context keywords and event pairs. However, causal signals are ambiguous, which may lead to the context-keywords bias and the event-pairs bias. To solve this issue, we propose the counterfactual reasoning that explicitly estimates the influence of context keywords and event pairs in training, so that we are able to eliminate the biases in inference.Experiments are conducted on two datasets, the result demonstrates the effectiveness of our method.
Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user’s emotion; (2) how to dynamically model the user’s state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users’ subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning.
Query-focused summarization has been considered as an important extension for text summarization. It aims to generate a concise highlight for a given query. Different from text summarization, query-focused summarization has long been plagued by the problem of lacking high-quality large-scale datasets. In this paper, we investigate the idea that whether we can integrate and transfer the knowledge of text summarization and question answering to assist the few-shot learning in query-focused summarization. Here, we propose prefix-merging, a prefix-based pretraining strategy for few-shot learning in query-focused summarization. Drawn inspiration from prefix-tuning, we are allowed to integrate the task knowledge from text summarization and question answering into a properly designed prefix and apply the merged prefix to query-focused summarization. With only a small amount of trainable parameters, prefix-merging outperforms fine-tuning on query-focused summarization. We further discuss the influence of different prefix designs and propose a visualized explanation for how prefix-merging works.
Recent approaches to empathetic response generation incorporate emotion causalities to enhance comprehension of both the user’s feelings and experiences. However, these approaches suffer from two critical issues. First, they only consider causalities between the user’s emotion and the user’s experiences, and ignore those between the user’s experiences. Second, they neglect interdependence among causalities and reason them independently. To solve the above problems, we expect to reason all plausible causalities interdependently and simultaneously, given the user’s emotion, dialogue history, and future dialogue content. Then, we infuse these causalities into response generation for empathetic responses. Specifically, we design a new model, i.e., the Conditional Variational Graph Auto-Encoder (CVGAE), for the causality reasoning, and adopt a multi-source attention mechanism in the decoder for the causality infusion. We name the whole framework as CARE, abbreviated for CAusality Reasoning for Empathetic conversation. Experimental results indicate that our method achieves state-of-the-art performance.
The rapid development of conversational assistants accelerates the study on conversational question answering (QA). However, the existing conversational QA systems usually answer users’ questions with a single knowledge source, e.g., paragraphs or a knowledge graph, but overlook the important visual cues, let alone multiple knowledge sources of different modalities. In this paper, we hence define a novel research task, i.e., multimodal conversational question answering (MMCoQA), aiming to answer users’ questions with multimodal knowledge sources via multi-turn conversations. This new task brings a series of research challenges, including but not limited to priority, consistency, and complementarity of multimodal knowledge. To facilitate the data-driven approaches in this area, we construct the first multimodal conversational QA dataset, named MMConvQA. Questions are fully annotated with not only natural language answers but also the corresponding evidence and valuable decontextualized self-contained questions. Meanwhile, we introduce an end-to-end baseline model, which divides this complex research task into question understanding, multi-modal evidence retrieval, and answer extraction. Moreover, we report a set of benchmarking results, and the results indicate that there is ample room for improvement.
In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexical, syntactic, word embeddings and Transformers-derived features and on a Gradient Boosting Regressor, achieves a top correlation score of 0.754 on the subtask 1 for single words and 0.659 on the subtask 2 for multiword expressions.
Sentence fusion is a conditional generation task that merges several related sentences into a coherent one, which can be deemed as a summary sentence. The importance of sentence fusion has long been recognized by communities in natural language generation, especially in text summarization. It remains challenging for a state-of-the-art neural abstractive summarization model to generate a well-integrated summary sentence. In this paper, we explore the effective sentence fusion method in the context of text summarization. We propose to build an event graph from the input sentences to effectively capture and organize related events in a structured way and use the constructed event graph to guide sentence fusion. In addition to make use of the attention over the content of sentences and graph nodes, we further develop a graph flow attention mechanism to control the fusion process via the graph structure. When evaluated on sentence fusion data built from two summarization datasets, CNN/DaliyMail and Multi-News, our model shows to achieve state-of-the-art performance in terms of Rouge and other metrics like fusion rate and faithfulness.
Causal reasoning aims to predict the future scenarios that may be caused by the observed actions. However, existing causal reasoning methods deal with causalities on the word level. In this paper, we propose a novel event-level causal reasoning method and demonstrate its use in the task of effect generation. In particular, we structuralize the observed cause-effect event pairs into an event causality network, which describes causality dependencies. Given an input cause sentence, a causal subgraph is retrieved from the event causality network and is encoded with the graph attention mechanism, in order to support better reasoning of the potential effects. The most probable effect event is then selected from the causal subgraph and is used as guidance to generate an effect sentence. Experiments show that our method generates more reasonable effect sentences than various well-designed competitors.
Most current extractive summarization models generate summaries by selecting salient sentences. However, one of the problems with sentence-level extractive summarization is that there exists a gap between the human-written gold summary and the oracle sentence labels. In this paper, we propose to extract fact-level semantic units for better extractive summarization. We also introduce a hierarchical structure, which incorporates the multi-level of granularities of the textual information into the model. In addition, we incorporate our model with BERT using a hierarchical graph mask. This allows us to combine BERT’s ability in natural language understanding and the structural information without increasing the scale of the model. Experiments on the CNN/DaliyMail dataset show that our model achieves state-of-the-art results.
Semantic parsing aims to transform natural language (NL) utterances into formal meaning representations (MRs), whereas an NL generator achieves the reverse: producing an NL description for some given MRs. Despite this intrinsic connection, the two tasks are often studied separately in prior work. In this paper, we model the duality of these two tasks via a joint learning framework, and demonstrate its effectiveness of boosting the performance on both tasks. Concretely, we propose a novel method of dual information maximization (DIM) to regularize the learning process, where DIM empirically maximizes the variational lower bounds of expected joint distributions of NL and MRs. We further extend DIM to a semi-supervision setup (SemiDIM), which leverages unlabeled data of both tasks. Experiments on three datasets of dialogue management and code generation (and summarization) show that performance on both semantic parsing and NL generation can be consistently improved by DIM, in both supervised and semi-supervised setups.
Most previous seq2seq summarization systems purely depend on the source text to generate summaries, which tends to work unstably. Inspired by the traditional template-based summarization approaches, this paper proposes to use existing summaries as soft templates to guide the seq2seq model. To this end, we use a popular IR platform to Retrieve proper summaries as candidate templates. Then, we extend the seq2seq framework to jointly conduct template Reranking and template-aware summary generation (Rewriting). Experiments show that, in terms of informativeness, our model significantly outperforms the state-of-the-art methods, and even soft templates themselves demonstrate high competitiveness. In addition, the import of high-quality external summaries improves the stability and readability of generated summaries.
The goal of sentiment-to-sentiment “translation” is to change the underlying sentiment of a sentence while keeping its content. The main challenge is the lack of parallel data. To solve this problem, we propose a cycled reinforcement learning method that enables training on unpaired data by collaboration between a neutralization module and an emotionalization module. We evaluate our approach on two review datasets, Yelp and Amazon. Experimental results show that our approach significantly outperforms the state-of-the-art systems. Especially, the proposed method substantially improves the content preservation performance. The BLEU score is improved from 1.64 to 22.46 and from 0.56 to 14.06 on the two datasets, respectively.
Most recent approaches use the sequence-to-sequence model for paraphrase generation. The existing sequence-to-sequence model tends to memorize the words and the patterns in the training dataset instead of learning the meaning of the words. Therefore, the generated sentences are often grammatically correct but semantically improper. In this work, we introduce a novel model based on the encoder-decoder framework, called Word Embedding Attention Network (WEAN). Our proposed model generates the words by querying distributed word representations (i.e. neural word embeddings), hoping to capturing the meaning of the according words. Following previous work, we evaluate our model on two paraphrase-oriented tasks, namely text simplification and short text abstractive summarization. Experimental results show that our model outperforms the sequence-to-sequence baseline by the BLEU score of 6.3 and 5.5 on two English text simplification datasets, and the ROUGE-2 F1 score of 5.7 on a Chinese summarization dataset. Moreover, our model achieves state-of-the-art performances on these three benchmark datasets.
Combining the virtues of probability graphic models and neural networks, Conditional Variational Auto-encoder (CVAE) has shown promising performance in applications such as response generation. However, existing CVAE-based models often generate responses from a single latent variable which may not be sufficient to model high variability in responses. To solve this problem, we propose a novel model that sequentially introduces a series of latent variables to condition the generation of each word in the response sequence. In addition, the approximate posteriors of these latent variables are augmented with a backward Recurrent Neural Network (RNN), which allows the latent variables to capture long-term dependencies of future tokens in generation. To facilitate training, we supplement our model with an auxiliary objective that predicts the subsequent bag of words. Empirical experiments conducted on Opensubtitle and Reddit datasets show that the proposed model leads to significant improvement on both relevance and diversity over state-of-the-art baselines.
Sequence-to-Sequence (seq2seq) models have become overwhelmingly popular in building end-to-end trainable dialogue systems. Though highly efficient in learning the backbone of human-computer communications, they suffer from the problem of strongly favoring short generic responses. In this paper, we argue that a good response should smoothly connect both the preceding dialogue history and the following conversations. We strengthen this connection by mutual information maximization. To sidestep the non-differentiability of discrete natural language tokens, we introduce an auxiliary continuous code space and map such code space to a learnable prior distribution for generation purpose. Experiments on two dialogue datasets validate the effectiveness of our model, where the generated responses are closely related to the dialogue context and lead to more interactive conversations.
Word embeddings have become widely-used in document analysis. While a large number of models for mapping words to vector spaces have been developed, it remains undetermined how much net gain can be achieved over traditional approaches based on bag-of-words. In this paper, we propose a new document clustering approach by combining any word embedding with a state-of-the-art algorithm for clustering empirical distributions. By using the Wasserstein distance between distributions, the word-to-word semantic relationship is taken into account in a principled way. The new clustering method is easy to use and consistently outperforms other methods on a variety of data sets. More importantly, the method provides an effective framework for determining when and how much word embeddings contribute to document analysis. Experimental results with multiple embedding models are reported.
Deep latent variable models have been shown to facilitate the response generation for open-domain dialog systems. However, these latent variables are highly randomized, leading to uncontrollable generated responses. In this paper, we propose a framework allowing conditional response generation based on specific attributes. These attributes can be either manually assigned or automatically detected. Moreover, the dialog states for both speakers are modeled separately in order to reflect personal features. We validate this framework on two different scenarios, where the attribute refers to genericness and sentiment states respectively. The experiment result testified the potential of our model, where meaningful responses can be generated in accordance with the specified attributes.
Current Chinese social media text summarization models are based on an encoder-decoder framework. Although its generated summaries are similar to source texts literally, they have low semantic relevance. In this work, our goal is to improve semantic relevance between source texts and summaries for Chinese social media summarization. We introduce a Semantic Relevance Based neural model to encourage high semantic similarity between texts and summaries. In our model, the source text is represented by a gated attention encoder, while the summary representation is produced by a decoder. Besides, the similarity score between the representations is maximized during training. Our experiments show that the proposed model outperforms baseline systems on a social media corpus.
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects. The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way and cover various topics about our daily life. We also manually label the developed dataset with communication intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it benefit the research field of dialog systems. The dataset is available on http://yanran.li/dailydialog
The availability of labelled corpus is of great importance for supervised learning in emotion classification tasks. Because it is time-consuming to manually label text, hashtags have been used as naturally annotated labels to obtain a large amount of labelled training data from microblog. However, natural hashtags contain too much noise for it to be used directly in learning algorithms. In this paper, we design a three-stage semi-automatic method to construct an emotion corpus from microblogs. Firstly, a lexicon based voting approach is used to verify the hashtag automatically. Secondly, a SVM based classifier is used to select the data whose natural labels are consistent with the predicted labels. Finally, the remaining data will be manually examined to filter out the noisy data. Out of about 48K filtered Chinese microblogs, 39k microblogs are selected to form the final corpus with the Kappa value reaching over 0.92 for the automatic parts and over 0.81 for the manual part. The proportion of automatic selection reaches 54.1%. Thus, the method can reduce about 44.5% of manual workload for acquiring quality data. Experiment on a classifier trained on this corpus shows that it achieves comparable results compared to the manually annotated NLP&CC2013 corpus.
Query relevance ranking and sentence saliency ranking are the two main tasks in extractive query-focused summarization. Previous supervised summarization systems often perform the two tasks in isolation. However, since reference summaries are the trade-off between relevance and saliency, using them as supervision, neither of the two rankers could be trained well. This paper proposes a novel summarization system called AttSum, which tackles the two tasks jointly. It automatically learns distributed representations for sentences as well as the document cluster. Meanwhile, it applies the attention mechanism to simulate the attentive reading of human behavior when a query is given. Extensive experiments are conducted on DUC query-focused summarization benchmark datasets. Without using any hand-crafted features, AttSum achieves competitive performance. We also observe that the sentences recognized to focus on the query indeed meet the query need.
Nowadays, social media has become a popular platform for companies to understand their customers. It provides valuable opportunities to gain new insights into how a person’s opinion about a product is influenced by his friends. Though various approaches have been proposed to study the opinion formation problem, they all formulate opinions as the derived sentiment values either discrete or continuous without considering the semantic information. In this paper, we propose a Content-based Social Influence Model to study the implicit mechanism underlying the change of opinions. We then apply the learned model to predict users’ future opinions. The advantages of the proposed model is the ability to handle the semantic information and to learn two influence components including the opinion influence of the content information and the social relation factors. In the experiments conducted on Twitter datasets, our model significantly outperforms other popular opinion formation models.
A core ontology is a mid-level ontology which bridges the gap between an upper ontology and a domain ontology. Automatic Chinese core ontology construction can help quickly model domain knowledge. A graph based core ontology construction algorithm (COCA) is proposed to automatically construct a core ontology from an English-Chinese bilingual term bank. This algorithm computes the mapping strength from a selected Chinese term to WordNet synset with association to an upper-level SUMO concept. The strength is measured using a graph model integrated with several mapping features from multiple information sources. The features include multiple translation feature between Chinese core term and WordNet, extended string feature and Part-of-Speech feature. Evaluation of COCA repeated on an English-Chinese bilingual Term bank with more than 130K entries shows that the algorithm is improved in performance compared with our previous research and can better serve the semi-automatic construction of mid-level ontology.
Ontology construction usually requires a domain-specific corpus for building corresponding concept hierarchy. The domain corpus must have a good coverage of domain knowledge. Wikipedia(Wiki), the worlds largest online encyclopaedic knowledge source, is open-content, collaboratively edited, and free of charge. It covers millions of articles and still keeps on expanding continuously. These characteristics make Wiki a good candidate as domain corpus resource in ontology construction. However, the selected article collection must have considerable quality and quantity. In this paper, a novel approach is proposed to identify articles in Wiki as domain-specific corpus by using available classification information in Wiki pages. The main idea is to generate a domain hierarchy from the hyperlinked pages of Wiki. Only articles strongly linked to this hierarchy are selected as the domain corpus. The proposed approach makes use of linked category information in Wiki pages to produce the hierarchy as a directed graph for obtaining a set of pages in the same connected branch. Ranking and filtering are then done on these pages based on the classification tree generated by the traversal algorithm. The experiment and evaluation results show that Wiki is a good resource for acquiring a relative high quality domain-specific corpus for ontology construction.
Relation extraction is the task of finding pre-defined semantic relations between two entities or entity mentions from text. Many methods, such as feature-based and kernel-based methods, have been proposed in the literature. Among them, feature-based methods draw much attention from researchers. However, to the best of our knowledge, existing feature-based methods did not explicitly incorporate the position feature and no in-depth analysis was conducted in this regard. In this paper, we define and exploit nine types of position information between two named entity mentions and then use it along with other features in a multi-class classification framework for Chinese relation extraction. Experiments on the ACE 2005 data set show that the position feature is more effective than the other recognized features like entity type/subtype and character-based N-gram context. Most important, it can be easily captured and does not require as much effort as applying deep natural language processing.
This paper presents the design and construction of a Chinese opinion corpus based on the online product reviews. Based on the observation on the characteristics of opinion expression in Chinese online product reviews, which is quite different from in the formal texts such as news, an annotation framework is proposed to guide the construction of the first Chinese opinion corpus based on online product reviews. The opinionated sentences are manually identified from the review text. Furthermore, for each comment in the opinionated sentence, its 13 describing elements are annotated including the expressions related to the interested product attributes and user opinions as well as the polarity and degree of the opinions. Currently, 12,724 comments are annotated in 10,935 sentences from review text. Through statistical analysis on the opinion corpus, some interesting characteristics of Chinese opinion expression are presented. This corpus is shown helpful to support systematic research on Chinese opinion analysis.
Chat language refers to the special human language widely used in the community of digital network chat. As chat language holds anomalous characteristics in forming words, phrases, and non-alphabetical characters, conventional natural language processing tools are ineffective to handle chat language text. Previous research shows that knowledge based methods perform less effectively in proc-essing unseen chat terms. This motivates us to construct a chat language corpus so that corpus-based techniques of chat language text processing can be developed and evaluated. However, creating the corpus merely by hand is difficult. One, this work is manpower consuming. Second, annotation inconsistency is serious. To minimize manpower and annotation inconsistency, a two-stage incre-mental annotation approach is proposed in this paper in constructing a chat language corpus. Experiments conducted in this paper show that the performance of corpus annotation can be improved greatly with this approach.
Entities are pivotal in describing events and objects, and also very important in Document Summarization. In general only explicit entities which can be extracted by a Named Entity Recognizer are used in real applications. However, implicit entities hidden behind the phrases or words, e.g. entity referred by the phrase cross border, are proved to be helpful in Document Summarization. In our experiment, we extract the implicit entities from the web resources.
Algorithms for automatic term extraction in a specific domain should consider at least two issues, namely Unithood and Termhood (Kageura, 1996). Unithood refers to the degree of a string to occur as a word or a phrase. Termhood (Chen Yirong, 2005) refers to the degree of a word or a phrase to occur as a domain specific concept. Unlike unithood, study on termhood is not yet widely reported. In classified corpora, the class information provides the cue to the nature of data and can be used in termhood calculation. Three algorithms are provided and evaluated to investigate termhood based on classified corpora. The three algorithms are based on lexicon set computing, term frequency and document frequency, and the strength of the relation between a term and its document class respectively. Our objective is to investigate the effects of these different termhood measurement features. After evaluation, we can find which features are more effective and also, how we can improve these different features to achieve the best performance. Preliminary results show that the first measure can effectively filter out independent terms or terms of general use.
An ontology describes conceptual knowledge in a specific domain. A lexical base collects a repository of words and gives independent definition of concepts. In this paper, we propose to use FCA as a tool to help constructing an ontology through an existing lexical base. We mainly address two issues. The first issue is how to select attributes to visualize the relations between lexical terms. The second issue is how to revise lexical definitions through analysing the relations in the ontology. Thus the focus is on the effect of interaction between a lexical base and an ontology for the purpose of good ontology construction. Finally, experiments have been conducted to verify our ideas.