This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.
Latent structure models are a powerful tool for modeling language data: they can mitigate the error propagation and annotation bottleneck in pipeline systems, while simultaneously uncovering linguistic insights about the data. One challenge with end-to-end training of these models is the argmax operation, which has null gradient. In this paper, we focus on surrogate gradients, a popular strategy to deal with this problem. We explore latent structure learning through the angle of pulling back the downstream learning objective. In this paradigm, we discover a principled motivation for both the straight-through estimator (STE) as well as the recently-proposed SPIGOT – a variant of STE for structured models. Our perspective leads to new algorithms in the same family. We empirically compare the known and the novel pulled-back estimators against the popular alternatives, yielding new insight for practitioners and revealing intriguing failure cases.
We present SemEval-2019 Task 8 on Fact Checking in Community Question Answering Forums, which features two subtasks. Subtask A is about deciding whether a question asks for factual information vs. an opinion/advice vs. just socializing. Subtask B asks to predict whether an answer to a factual question is true, false or not a proper answer. We received 17 official submissions for subtask A and 11 official submissions for Subtask B. For subtask A, all systems improved over the majority class baseline. For Subtask B, all systems were below a majority class baseline, but several systems were very close to it. The leaderboard and the data from the competition can be found at http://competitions.codalab.org/competitions/20022.
Scheduled sampling is a technique for avoiding one of the known problems in sequence-to-sequence generation: exposure bias. It consists of feeding the model a mix of the teacher forced embeddings and the model predictions from the previous step in training time. The technique has been used for improving model performance with recurrent neural networks (RNN). In the Transformer model, unlike the RNN, the generation of a new word attends to the full sentence generated so far, not only to the last word, and it is not straightforward to apply the scheduled sampling technique. We propose some structural changes to allow scheduled sampling to be applied to Transformer architectures, via a two-pass decoding strategy. Experiments on two language pairs achieve performance close to a teacher-forcing baseline and show that this technique is promising for further exploration.
Latent structure models are a powerful tool for modeling compositional data, discovering linguistic structure, and building NLP pipelines. They are appealing for two main reasons: they allow incorporating structural bias during training, leading to more accurate models; and they allow discovering hidden linguistic structure, which provides better interpretability. This tutorial will cover recent advances in discrete latent structure models. We discuss their motivation, potential, and limitations, then explore in detail three strategies for designing such models: gradient approximation, reinforcement learning, and end-to-end differentiable methods. We highlight connections among all these methods, enumerating their strengths and weaknesses. The models we present and analyze have been applied to a wide variety of NLP tasks, including sentiment analysis, natural language inference, language modeling, machine translation, and semantic parsing. Examples and evaluation will be covered throughout. After attending the tutorial, a practitioner will be better informed about which method is best suited for their problem.
We address information credibility in community forums, in a setting in which the credibility of an answer posted in a question thread by a particular user has to be predicted. First, we motivate the problem and we create a publicly available annotated English corpus by crowdsourcing. Second, we propose a large set of features to predict the credibility of the answers. The features model the user, the answer, the question, the thread as a whole, and the interaction between them. Our experiments with ranking SVMs show that the credibility labels can be predicted with high performance according to several standard IR ranking metrics, thus supporting the potential usage of this layer of credibility information in practical applications. The features modeling the profile of the user (in particular trollness) turn out to be most important, but embedding features modeling the answer and the similarity between the question and the answer are also very relevant. Overall, half of the gap between the baseline performance and the perfect classifier can be covered using the proposed features.