This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In this paper, we add under-resourced languages into the language repertoire of an existing off-the-shelf language identifier, HeLI-OTS. Adding more languages to a language identifier often comes with the drawback of lessened accuracy for the languages already part of the repertoire. We aim to minimize this effect. As sources for training and development data in the new languages, we use the OpenLID and FLORES-200 datasets. They are openly available high-quality datasets that are especially well-suited for language identifier development. By carefully inspecting the effect of each added language and the quality of their training and development data, we managed to add support for 20 new under-resourced languages to HeLI-OTS without affecting the performance of any existing languages to a noticeable extent.
In this paper, we use automatic language identification to investigate the usage of different languages in the plenary sessions of the Parliament of Finland. Finland has two national languages, Finnish and Swedish. The plenary sessions are published as transcriptions of speeches in Parliament, reflecting the language the speaker used. In addition to charting out language use, we demonstrate how language identification can be used to audit the quality of the dataset. On the one hand, we made slight improvements to our language identifier; on the other hand, we made a list of improvement suggestions for the next version of the dataset.
Language identification is an important first step in many NLP applications. Most publicly available language identification datasets, however, are compiled under the assumption that the gold label of each instance is determined by where texts are retrieved from. Research has shown that this is a problematic assumption, particularly in the case of very similar languages (e.g., Croatian and Serbian) and national language varieties (e.g., Brazilian and European Portuguese), where texts may contain no distinctive marker of the particular language or variety. To overcome this important limitation, this paper presents DSL True Labels (DSL-TL), the first human-annotated multilingual dataset for language variety identification. DSL-TL contains a total of 12,900 instances in Portuguese, split between European Portuguese and Brazilian Portuguese; Spanish, split between Argentine Spanish and Castilian Spanish; and English, split between American English and British English. We trained multiple models to discriminate between these language varieties, and we present the results in detail. The data and models presented in this paper provide a reliable benchmark toward the development of robust and fairer language variety identification systems. We make DSL-TL freely available to the research community.
This report presents the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2023. The campaign is part of the tenth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2023. Three separate shared tasks were included this year: Slot and intent detection for low-resource language varieties (SID4LR), Discriminating Between Similar Languages – True Labels (DSL-TL), and Discriminating Between Similar Languages – Speech (DSL-S). All three tasks were organized for the first time this year.
This paper introduces HeLI-OTS, an off-the-shelf text language identification tool using the HeLI language identification method. The HeLI-OTS language identifier is equipped with language models for 200 languages and licensed for academic as well as commercial use. We present the HeLI method and its use in our previous research. Then we compare the performance of the HeLI-OTS language identifier with that of fastText on two different data sets, showing that fastText favors the recall of common languages, whereas HeLI-OTS reaches both high recall and high precision for all languages. While introducing existing off-the-shelf language identification tools, we also give a picture of digital humanities-related research that uses such tools. The validity of the results of such research depends on the results given by the language identifier used, and especially for research focusing on the less common languages, the tendency to favor widely used languages might be very detrimental, which Heli-OTS is now able to remedy.
This article describes the language identification system used by the SUKI team in the 2022 Nuanced Arabic Dialect Identification (NADI) shared task. In addition to the system description, we give some details of the dialect identification experiments we conducted while preparing our submissions. In the end, we submitted only one official run. We used a Naive Bayes-based language identifier with character n-grams from one to four, of which we implemented a new version, which automatically optimizes its parameters. We also experimented with clustering the training data according to different topics. With the macro F1 score of 0.1963 on test set A and 0.1058 on test set B, we achieved the 18th position out of the 19 competing teams.
This article describes the language identification approach used by the SUKI team in the Identification of Languages and Dialects of Italy and the French Cross-Domain Dialect Identification shared tasks organized as part of the VarDial workshop 2022. We describe some experiments and the preprocessing techniques we used for the training data in preparation for the shared task submissions, which are also discussed. Our Naive Bayes-based adaptive system reached the first position in Italian language identification and came second in the French variety identification task.
This paper describes the results of the shared tasks organized as part of the VarDial Evaluation Campaign 2021. The campaign was part of the eighth workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with EACL 2021. Four separate shared tasks were included this year: Dravidian Language Identification (DLI), Romanian Dialect Identification (RDI), Social Media Variety Geolocation (SMG), and Uralic Language Identification (ULI). DLI was organized for the first time and the other three continued a series of tasks from previous evaluation campaigns.
This article describes the experiments and systems developed by the SUKI team for the second edition of the Romanian Dialect Identification (RDI) shared task which was organized as part of the 2021 VarDial Evaluation Campaign. We submitted two runs to the shared task and our second submission was the overall best submission by a noticeable margin. Our best submission used a character n-gram based naive Bayes classifier with adaptive language models. We describe our experiments on the development set leading to both submissions.
This paper describes the submissions by team HWR to the Dravidian Language Identification (DLI) shared task organized at VarDial 2021 workshop. The DLI training set includes 16,674 YouTube comments written in Roman script containing code-mixed text with English and one of the three South Dravidian languages: Kannada, Malayalam, and Tamil. We submitted results generated using two models, a Naive Bayes classifier with adaptive language models, which has shown to obtain competitive performance in many language and dialect identification tasks, and a transformer-based model which is widely regarded as the state-of-the-art in a number of NLP tasks. Our first submission was sent in the closed submission track using only the training set provided by the shared task organisers, whereas the second submission is considered to be open as it used a pretrained model trained with external data. Our team attained shared second position in the shared task with the submission based on Naive Bayes. Our results reinforce the idea that deep learning methods are not as competitive in language identification related tasks as they are in many other text classification tasks.
Web corpora creation for minority languages that do not have their own top-level Internet domain is no trivial matter. Web pages in such minority languages often contain text and links to pages in the dominant language of the country. When building corpora in specific languages, one has to decide how and at which stage to make sure the texts gathered are in the desired language. In the “Finno-Ugric Languages and the Internet” (Suki) project, we created web corpora for Uralic minority languages using web crawling combined with a language identification system in order to identify the language while crawling. In addition, we used language set identification and crowdsourcing before making sentence corpora out of the downloaded texts. In this article, we describe a strategy for collecting textual material from the Internet for minority languages. The strategy is based on the experiences we gained during the Suki project.
This paper presents the results of the VarDial Evaluation Campaign 2020 organized as part of the seventh workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with COLING 2020. The campaign included three shared tasks each focusing on a different challenge of language and dialect identification: Romanian Dialect Identification (RDI), Social Media Variety Geolocation (SMG), and Uralic Language Identification (ULI). The campaign attracted 30 teams who enrolled to participate in one or multiple shared tasks and 14 of them submitted runs across the three shared tasks. Finally, 11 papers describing participating systems are published in the VarDial proceedings and referred to in this report.
This article introduces the Wanca 2017 web corpora from which the sentences written in minor Uralic languages were collected for the test set of the Uralic Language Identification (ULI) 2020 shared task. We describe the ULI shared task and how the test set was constructed using the Wanca 2017 corpora and texts in different languages from the Leipzig corpora collection. We also provide the results of a baseline language identification experiment conducted using the ULI 2020 dataset.
In this paper we describe the systems we used when participating in the VarDial Evaluation Campaign organized as part of the 7th workshop on NLP for similar languages, varieties and dialects. The shared tasks we participated in were the second edition of the Romanian Dialect Identification (RDI) and the first edition of the Social Media Variety Geolocation (SMG). The submissions of our SUKI team used generative language models based on Naive Bayes and character n-grams.
In this paper, we present the findings of the Third VarDial Evaluation Campaign organized as part of the sixth edition of the workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects (VarDial), co-located with NAACL 2019. This year, the campaign included five shared tasks, including one task re-run – German Dialect Identification (GDI) – and four new tasks – Cross-lingual Morphological Analysis (CMA), Discriminating between Mainland and Taiwan variation of Mandarin Chinese (DMT), Moldavian vs. Romanian Cross-dialect Topic identification (MRC), and Cuneiform Language Identification (CLI). A total of 22 teams submitted runs across the five shared tasks. After the end of the competition, we received 14 system description papers, which are published in the VarDial workshop proceedings and referred to in this report.
This article introduces a corpus of cuneiform texts from which the dataset for the use of the Cuneiform Language Identification (CLI) 2019 shared task was derived as well as some preliminary language identification experiments conducted using that corpus. We also describe the CLI dataset and how it was derived from the corpus. In addition, we provide some baseline language identification results using the CLI dataset. To the best of our knowledge, the experiments detailed here represent the first time that automatic language identification methods have been used on cuneiform data.
This paper describes the language identification systems used by the SUKI team in the Discriminating between the Mainland and Taiwan variation of Mandarin Chinese (DMT) and the German Dialect Identification (GDI) shared tasks which were held as part of the third VarDial Evaluation Campaign. The DMT shared task included two separate tracks, one for the simplified Chinese script and one for the traditional Chinese script. We submitted three runs on both tracks of the DMT task as well as on the GDI task. We won the traditional Chinese track using Naive Bayes with language model adaptation, came second on GDI with an adaptive version of the HeLI 2.0 method, and third on the simplified Chinese track using again the adaptive Naive Bayes.
This paper presents the experiments and results obtained by the SUKI team in the Indo-Aryan Language Identification shared task of the VarDial 2018 Evaluation Campaign. The shared task was an open one, but we did not use any corpora other than what was distributed by the organizers. A total of eight teams provided results for this shared task. Our submission using a HeLI-method based language identifier with iterative language model adaptation obtained the best results in the shared task with a macro F1-score of 0.958.
This paper presents the experiments and results obtained by the SUKI team in the Discriminating between Dutch and Flemish in Subtitles shared task of the VarDial 2018 Evaluation Campaign. Our best submission was ranked 8th, obtaining macro F1-score of 0.61. Our best results were produced by a language identifier implementing the HeLI method without any modifications. We describe, in addition to the best method we used, some of the experiments we did with unsupervised clustering.
In this paper we present the experiments and results by the SUKI team in the German Dialect Identification shared task of the VarDial 2018 Evaluation Campaign. Our submission using HeLI with adaptive language models obtained the best results in the shared task with a macro F1-score of 0.686, which is clearly higher than the other submitted results. Without some form of unsupervised adaptation on the test set, it might not be possible to reach as high an F1-score with the level of domain difference between the datasets of the shared task. We describe the methods used in detail, as well as some additional experiments carried out during the shared task.
In this paper we describe the non-linear mappings we used with the Helsinki language identification method, HeLI, in the 4th edition of the Discriminating between Similar Languages (DSL) shared task, which was organized as part of the VarDial 2017 workshop. Our SUKI team participated on the closed track together with 10 other teams. Our system reached the 7th position in the track. We describe the HeLI method and the non-linear mappings in mathematical notation. The HeLI method uses a probabilistic model with character n-grams and word-based backoff. We also describe our trials using the non-linear mappings instead of relative frequencies and we present statistics about the back-off function of the HeLI method.
In this paper we describe the Helsinki language identification method, HeLI, and the resources we created for and used in the 3rd edition of the Discriminating between Similar Languages (DSL) shared task, which was organized as part of the VarDial 2016 workshop. The shared task comprised of a total of 8 tracks, of which we participated in 7. The shared task had a record number of participants, with 17 teams providing results for the closed track of the test set A. Our system reached the 2nd position in 4 tracks (A closed and open, B1 open and B2 open) and in this paper we are focusing on the methods and data used for those tracks. We describe our word-based backoff method in mathematical notation. We also describe how we selected the corpus we used in the open tracks.