Tingjian Zhang
2024
How Proficient Are Large Language Models in Formal Languages? An In-Depth Insight for Knowledge Base Question Answering
Jinxin Liu
|
Shulin Cao
|
Jiaxin Shi
|
Tingjian Zhang
|
Lunyiu Nie
|
Linmei Hu
|
Lei Hou
|
Juanzi Li
Findings of the Association for Computational Linguistics ACL 2024
Knowledge Base Question Answering (KBQA) aims to answer natural language questions based on facts in knowledge bases. A typical approach to KBQA is semantic parsing, which translates a question into an executable logical form in a formal language. Recent works leverage the capabilities of large language models (LLMs) for logical form generation to improve performance. However, although it is validated that LLMs are capable of solving some KBQA problems, there has been little discussion on the differences in LLMs’ proficiency in formal languages used in semantic parsing. In this work, we propose to evaluate the understanding and generation ability of LLMs to deal with differently structured logical forms by examining the inter-conversion of natural and formal language through in-context learning of LLMs. Extensive experiments with models of different sizes show that state-of-the-art LLMs can understand formal languages as well as humans, but generating correct logical forms given a few examples remains a challenge. Most importantly, our results also indicate that LLMs exhibit considerable sensitivity. In general, the formal language with a lower formalization level, i.e., the more similar it is to natural language, is more friendly to LLMs. Code and data can be found at https://github.com/Matthewlliu/structure_probe.
2023
Reasoning over Hierarchical Question Decomposition Tree for Explainable Question Answering
Jiajie Zhang
|
Shulin Cao
|
Tingjian Zhang
|
Xin Lv
|
Juanzi Li
|
Lei Hou
|
Jiaxin Shi
|
Qi Tian
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Explainable question answering (XQA) aims to answer a given question and provide an explanation why the answer is selected. Existing XQA methods focus on reasoning on a single knowledge source, e.g., structured knowledge bases, unstructured corpora, etc. However, integrating information from heterogeneous knowledge sources is essential to answer complex questions. In this paper, we propose to leverage question decomposing for heterogeneous knowledge integration, by breaking down a complex question into simpler ones, and selecting the appropriate knowledge source for each sub-question. To facilitate reasoning, we propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT). First, we build the Hierarchical Question Decomposition Tree (HQDT) to understand the semantics of a complex question; then, we conduct probabilistic reasoning over HQDT from root to leaves recursively, to aggregate heterogeneous knowledge at different tree levels and search for a best solution considering the decomposing and answering probabilities. The experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly, demonstrating the effectiveness of leveraging question decomposing for knowledge integration and our RoHT framework.
Search
Co-authors
- Shulin Cao 2
- Jiaxin Shi 2
- Lei Hou 2
- Juanzi Li 2
- Jinxin Liu 1
- show all...