Tianlong Chen


2024

pdf
ReTA: Recursively Thinking Ahead to Improve the Strategic Reasoning of Large Language Models
Jinhao Duan | Shiqi Wang | James Diffenderfer | Lichao Sun | Tianlong Chen | Bhavya Kailkhura | Kaidi Xu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Current logical reasoning evaluations of Large Language Models (LLMs) primarily focus on single-turn and static environments, such as arithmetic problems. The crucial problem of multi-turn, strategic reasoning is under-explored. In this work, we analyze the multi-turn strategic reasoning of LLMs through text-driven complete- and incomplete-information gaming, e.g., board games (Tic-Tac-Toe, Connect-4) and poker games (Texas Hold’em Poker). Specifically, we consider two distinct scenarios: 1) Online Racing, featuring multiple LLMs/agents to facilitate direct competition and comparison; 2) Offline Probing, constructing targeted questions with verified ground truth to evaluate LLMs’ strategic behaviors. Experimental results demonstrate that existing state-of-the-art LLMs and reasoning schemes are largely ineffective for strategic reasoning tasks. To mitigate these limitations, we propose a simple yet effective Recursively Thinking-Ahead (ReTA) agent, incorporating a recursive prompting mechanism that automatically analyzes the opponents’ future moves/actions and assigns reward signals for these situations, to strengthen the strategic reasoning of LLMs. We hope our work could spur further research and exploration in the multi-turn strategic reasoning of LLMs. The code is available at https://github.com/jinhaoduan/ReTA.

pdf
Reinforcement Learning-Driven LLM Agent for Automated Attacks on LLMs
Xiangwen Wang | Jie Peng | Kaidi Xu | Huaxiu Yao | Tianlong Chen
Proceedings of the Fifth Workshop on Privacy in Natural Language Processing

Recently, there has been a growing focus on conducting attacks on large language models (LLMs) to assess LLMs’ safety. Yet, existing attack methods face challenges, including the need to access model weights or merely ensuring LLMs output harmful information without controlling the specific content of their output. Exactly control of the LLM output can produce more inconspicuous attacks which could reveal a new page for LLM security. To achieve this, we propose RLTA: the Reinforcement Learning Targeted Attack, a framework that is designed for attacking language models (LLMs) and is adaptable to both white box (weight accessible) and black box (weight inaccessible) scenarios. It is capable of automatically generating malicious prompts that trigger target LLMs to produce specific outputs. We demonstrate RLTA in two different scenarios: LLM trojan detection and jailbreaking. The comprehensive experimental results show the potential of RLTA in enhancing the security measures surrounding contemporary LLMs.

pdf
Contextualization Distillation from Large Language Model for Knowledge Graph Completion
Dawei Li | Zhen Tan | Tianlong Chen | Huan Liu
Findings of the Association for Computational Linguistics: EACL 2024

While textual information significantly enhances the performance of pre-trained language models (PLMs) in knowledge graph completion (KGC), the static and noisy nature of existing corpora collected from Wikipedia articles or synsets definitions often limits the potential of PLM-based KGC models. To surmount these challenges, we introduce the Contextualization Distillation strategy, a versatile plug-in-and-play approach compatible with both discriminative and generative KGC frameworks. Our method begins by instructing large language models (LLMs) to transform compact, structural triplets into context-rich segments. Subsequently, we introduce two tailored auxiliary tasks—reconstruction and contextualization—allowing smaller KGC models to assimilate insights from these enriched triplets. Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach, revealing consistent performance enhancements irrespective of underlying pipelines or architectures. Moreover, our analysis makes our method more explainable and provides insight into how to generate high-quality corpora for KGC, as well as the selection of suitable distillation tasks.

2023

pdf
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models
Xuxi Chen | Tianlong Chen | Weizhu Chen | Ahmed Hassan Awadallah | Zhangyang Wang | Yu Cheng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Gigantic pre-trained models have become central to natural language processing (NLP), serving as the starting point for fine-tuning towards a range of downstream tasks. However, two pain points persist for this paradigm: (a) as the pre-trained models grow bigger (e.g., 175B parameters for GPT-3), even the fine-tuning process can be time-consuming and computationally expensive; (b) the fine-tuned model has the same size as its starting point by default, which is neither sensible due to its more specialized functionality, nor practical since many fine-tuned models will be deployed in resource-constrained environments. To address these pain points, we propose a framework for resource- and parameter-efficient fine-tuning by leveraging the sparsity prior in both weight updates and the final model weights. Our proposed framework, dubbed Dually Sparsity-Embedded Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter efficient fine-tuning - by enforcing sparsity-aware low-rank updates on top of the pre-trained weights; and (ii) resource-efficient inference - by encouraging a sparse weight structure towards the final fine-tuned model. We leverage sparsity in these two directions by exploiting both unstructured and structured sparse patterns in pre-trained language models viaa unified approach. Extensive experiments and in-depth investigations, with diverse network backbones (i.e., BERT, RoBERTa, and GPT-2) on dozens of datasets, consistently demonstrate impressive parameter-/inference-efficiency, while maintaining competitive downstream performance. For instance, DSEE saves about 25% inference FLOPs while achieving comparable performance, with 0.5% trainable parameters on BERT. Codes are available at https://github.com/VITA-Group/DSEE.

2020

pdf
Dataset and Enhanced Model for Eligibility Criteria-to-SQL Semantic Parsing
Xiaojing Yu | Tianlong Chen | Zhengjie Yu | Huiyu Li | Yang Yang | Xiaoqian Jiang | Anxiao Jiang
Proceedings of the Twelfth Language Resources and Evaluation Conference

Clinical trials often require that patients meet eligibility criteria (e.g., have specific conditions) to ensure the safety and the effectiveness of studies. However, retrieving eligible patients for a trial from the electronic health record (EHR) database remains a challenging task for clinicians since it requires not only medical knowledge about eligibility criteria, but also an adequate understanding of structured query language (SQL). In this paper, we introduce a new dataset that includes the first-of-its-kind eligibility-criteria corpus and the corresponding queries for criteria-to-sql (Criteria2SQL), a task translating the eligibility criteria to executable SQL queries. Compared to existing datasets, the queries in the dataset here are derived from the eligibility criteria of clinical trials and include Order-sensitive, Counting-based, and Boolean-type cases which are not seen before. In addition to the dataset, we propose a novel neural semantic parser as a strong baseline model. Extensive experiments show that the proposed parser outperforms existing state-of-the-art general-purpose text-to-sql models while highlighting the challenges presented by the new dataset. The uniqueness and the diversity of the dataset leave a lot of research opportunities for future improvement.