This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Online texts - across genres, registers, domains, and styles - are riddled with human stereotypes, expressed in overt or subtle ways. Word embeddings, trained on these texts, perpetuate and amplify these stereotypes, and propagate biases to machine learning models that use word embeddings as features. In this work, we propose a method to debias word embeddings in multiclass settings such as race and religion, extending the work of (Bolukbasi et al., 2016) from the binary setting, such as binary gender. Next, we propose a novel methodology for the evaluation of multiclass debiasing. We demonstrate that our multiclass debiasing is robust and maintains the efficacy in standard NLP tasks.
Code-switching (CS), the practice of alternating between two or more languages in conversations, is pervasive in most multi-lingual communities. CS texts have a complex interplay between languages and occur in informal contexts that make them harder to collect and construct NLP tools for. We approach this problem through Language Modeling (LM) on a new Hindi-English mixed corpus containing 59,189 unique sentences collected from blogging websites. We implement and discuss different Language Models derived from a multi-layered LSTM architecture. We hypothesize that encoding language information strengthens a language model by helping to learn code-switching points. We show that our highest performing model achieves a test perplexity of 19.52 on the CS corpus that we collected and processed. On this data we demonstrate that our performance is an improvement over AWD-LSTM LM (a recent state of the art on monolingual English).
Multimodal machine learning is a core research area spanning the language, visual and acoustic modalities. The central challenge in multimodal learning involves learning representations that can process and relate information from multiple modalities. In this paper, we propose two methods for unsupervised learning of joint multimodal representations using sequence to sequence (Seq2Seq) methods: a Seq2Seq Modality Translation Model and a Hierarchical Seq2Seq Modality Translation Model. We also explore multiple different variations on the multimodal inputs and outputs of these seq2seq models. Our experiments on multimodal sentiment analysis using the CMU-MOSI dataset indicate that our methods learn informative multimodal representations that outperform the baselines and achieve improved performance on multimodal sentiment analysis, specifically in the Bimodal case where our model is able to improve F1 Score by twelve points. We also discuss future directions for multimodal Seq2Seq methods.
Building dialogue interfaces for real-world scenarios often entails training semantic parsers starting from zero examples. How can we build datasets that better capture the variety of ways users might phrase their queries, and what queries are actually realistic? Wang et al. (2015) proposed a method to build semantic parsing datasets by generating canonical utterances using a grammar and having crowdworkers paraphrase them into natural wording. A limitation of this approach is that it induces bias towards using similar language as the canonical utterances. In this work, we present a methodology that elicits meaningful and lexically diverse queries from users for semantic parsing tasks. Starting from a seed lexicon and a generative grammar, we pair logical forms with mixed text-image representations and ask crowdworkers to paraphrase and confirm the plausibility of the queries that they generated. We use this method to build a semantic parsing dataset from scratch for a dialog agent in a smart-home simulation. We find evidence that this dataset, which we have named SmartHome, is demonstrably more lexically diverse and difficult to parse than existing domain-specific semantic parsing datasets.