This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).
Automatic text simplification (TS) aims to automate the process of rewriting text to make it easier for people to read. A pre-requisite for TS to be useful is that it should convey information that is consistent with the meaning of the original text. However, current TS evaluation protocols assess system outputs for simplicity and meaning preservation without regard for the document context in which output sentences occur and for how people understand them. In this work, we introduce a human evaluation framework to assess whether simplified texts preserve meaning using reading comprehension questions. With this framework, we conduct a thorough human evaluation of texts by humans and by nine automatic systems. Supervised systems that leverage pre-training knowledge achieve the highest scores on the reading comprehension tasks among the automatic controllable TS systems. However, even the best-performing supervised system struggles with at least 14% of the questions, marking them as “unanswerable” based on simplified content. We further investigate how existing TS evaluation metrics and automatic question-answering systems approximate the human judgments we obtained.
Large-scale generative models show an impressive ability to perform a wide range of Natural Language Processing (NLP) tasks using in-context learning, where a few examples are used to describe a task to the model. For Machine Translation (MT), these examples are typically randomly sampled from the development dataset with a similar distribution as the evaluation set. However, it is unclear how the choice of these in context examples and their ordering impacts the output translation quality. In this work, we aim to understand the properties of good in-context examples for MT in both in-domain and out-of-domain settings. We show that the translation quality and the domain of the in-context examples matter and that 1-shot noisy unrelated examples can have a catastrophic impact on output quality. While concatenating multiple random examples reduces the effect of noise, a single good prompt optimized to maximize translation quality on the development dataset can elicit learned information from the pre-trained language model. Adding similar examples based on an n-gram overlap with the test source significantly and consistently improves the translation quality of the outputs, outperforming a strong kNN-MT baseline in 2 out of 4 out-of-domain datasets.
Neural sequence generation models are known to “hallucinate”, by producing outputs that are unrelated to the source text. These hallucinations are potentially harmful, yet it remains unclear in what conditions they arise and how to mitigate their impact. In this work, we first identify internal model symptoms of hallucinations by analyzing the relative token contributions to the generation in contrastive hallucinated vs. non-hallucinated outputs generated via source perturbations. We then show that these symptoms are reliable indicators of natural hallucinations, by using them to design a lightweight hallucination detector which outperforms both model-free baselines and strong classifiers based on quality estimation or large pre-trained models on manually annotated English-Chinese and German-English translation test beds.
A major challenge in the practical use of Machine Translation (MT) is that users lack information on translation quality to make informed decisions about how to rely on outputs. Progress in quality estimation research provides techniques to automatically assess MT quality, but these techniques have primarily been evaluated in vitro by comparison against human judgments outside of a specific context of use. This paper evaluates quality estimation feedback in vivo with a human study in realistic high-stakes medical settings. Using Emergency Department discharge instructions, we study how interventions based on quality estimation versus backtranslation assist physicians in deciding whether to show MT outputs to a patient. We find that quality estimation improves appropriate reliance on MT, but backtranslation helps physicians detect more clinically harmful errors that QE alone often misses.
Text simplification systems rewrite text to make it more readable while preserving its content. However, what makes a text easy to read depends on the intended readers. Recent work has shown that pre-trained language models can simplify text using a wealth of techniques to control output simplicity, ranging from specifying only the desired reading grade level, to directly specifying low-level edit operations. Yet it remains unclear how to set these control parameters in practice. Existing approaches set them at the corpus level, disregarding the complexity of individual inputs and considering only one level of output complexity. In this work, we conduct an empirical study to understand how different control mechanisms impact the adequacy and simplicity of text simplification systems. Based on these insights, we introduce a simple method that predicts the edit operations required for simplifying a text for a specific grade level on an instance-per-instance basis. This approach improves the quality of the simplified outputs over corpus-level search-based heuristics.
We present BLESS, a comprehensive performance benchmark of the most recent state-of-the-art Large Language Models (LLMs) on the task of text simplification (TS). We examine how well off-the-shelf LLMs can solve this challenging task, assessing a total of 44 models, differing in size, architecture, pre-training methods, and accessibility, on three test sets from different domains (Wikipedia, news, and medical) under a few-shot setting. Our analysis considers a suite of automatic metrics, as well as a large-scale quantitative investigation into the types of common edit operations performed by the different models. Furthermore, we perform a manual qualitative analysis on a subset of model outputs to better gauge the quality of the generated simplifications. Our evaluation indicates that the best LLMs, despite not being trained on TS perform comparably with state-of-the-art TS baselines. Additionally, we find that certain LLMs demonstrate a greater range and diversity of edit operations. Our performance benchmark will be available as a resource for the development of future TS methods and evaluation metrics.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
We propose a framework for training non-autoregressive sequence-to-sequence models for editing tasks, where the original input sequence is iteratively edited to produce the output. We show that the imitation learning algorithms designed to train such models for machine translation introduces mismatches between training and inference that lead to undertraining and poor generalization in editing scenarios. We address this issue with two complementary strategies: 1) a roll-in policy that exposes the model to intermediate training sequences that it is more likely to encounter during inference, 2) a curriculum that presents easy-to-learn edit operations first, gradually increasing the difficulty of training samples as the model becomes competent. We show the efficacy of these strategies on two challenging English editing tasks: controllable text simplification and abstractive summarization. Our approach significantly improves output quality on both tasks and controls output complexity better on the simplification task.
This paper describes the University of Maryland’s submission to the Special Task on Formality Control for Spoken Language Translation at IWSLT, which evaluates translation from English into 6 languages with diverse grammatical formality markers. We investigate to what extent this problem can be addressed with a single multilingual model, simultaneously controlling its output for target language and formality. Results show that this strategy can approach the translation quality and formality control achieved by dedicated translation models. However, the nature of the underlying pre-trained language model and of the finetuning samples greatly impact results.
With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, Web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.
Non-autoregressive (NAR) machine translation has recently received significant developments and now achieves comparable quality with autoregressive (AR) models on some benchmarks while providing an efficient alternative to AR inference. However, while AR translation is often used to implement multilingual models that benefit from transfer between languages and from improved serving efficiency, multilingual NAR models remain relatively unexplored. Taking Connectionist Temporal Classification as an example NAR model and IMPUTER as a semi-NAR model, we present a comprehensive empirical study of multilingual NAR. We test its capabilities with respect to positive transfer between related languages and negative transfer under capacity constraints. As NAR models require distilled training sets, we carefully study the impact of bilingual versus multilingual teachers. Finally, we fit a scaling law for multilingual NAR to determine capacity bottlenecks, which quantifies its performance relative to the AR model as the model scale increases.
This paper describes submission to the WMT 2022 Quality Estimation shared task (Task 1: sentence-level quality prediction). We follow a simple and intuitive approach, which consists of estimating MT quality by automatically back-translating hypotheses into the source language using a multilingual MT system. We then compare the resulting backtranslation with the original source using standard MT evaluation metrics. We find that even the best-performing backtranslation-based scores perform substantially worse than supervised QE systems, including the organizers’ baseline. However, combining backtranslation-based metrics with off-the-shelf QE scorers improves correlation with human judgments, suggesting that they can indeed complement a supervised QE system.
Reference-free evaluation has the potential to make machine translation evaluation substantially more scalable, allowing us to pivot easily to new languages or domains. It has been recently shown that the probabilities given by a large, multilingual model can achieve state of the art results when used as a reference-free metric. We experiment with various modifications to this model, and demonstrate that by scaling it up we can match the performance of BLEU. We analyze various potential weaknesses of the approach, and find that it is surprisingly robust and likely to offer reasonable performance across a broad spectrum of domains and different system qualities.
This paper reviews and summarizes human evaluation practices described in 97 style transfer papers with respect to three main evaluation aspects: style transfer, meaning preservation, and fluency. In principle, evaluations by human raters should be the most reliable. However, in style transfer papers, we find that protocols for human evaluations are often underspecified and not standardized, which hampers the reproducibility of research in this field and progress toward better human and automatic evaluation methods.
While the field of style transfer (ST) has been growing rapidly, it has been hampered by a lack of standardized practices for automatic evaluation. In this paper, we evaluate leading automatic metrics on the oft-researched task of formality style transfer. Unlike previous evaluations, which focus solely on English, we expand our focus to Brazilian-Portuguese, French, and Italian, making this work the first multilingual evaluation of metrics in ST. We outline best practices for automatic evaluation in (formality) style transfer and identify several models that correlate well with human judgments and are robust across languages. We hope that this work will help accelerate development in ST, where human evaluation is often challenging to collect.
This paper describes the University of Maryland’s submission to the Duolingo Shared Task on Simultaneous Translation And Paraphrase for Language Education (STAPLE). Unlike the standard machine translation task, STAPLE requires generating a set of outputs for a given input sequence, aiming to cover the space of translations produced by language learners. We adapt neural machine translation models to this requirement by (a) generating n-best translation hypotheses from a model fine-tuned on learner translations, oversampled to reflect the distribution of learner responses, and (b) filtering hypotheses using a feature-rich binary classifier that directly optimizes a close approximation of the official evaluation metric. Combination of systems that use these two strategies achieves F1 scores of 53.9% and 52.5% on Vietnamese and Portuguese, respectively ranking 2nd and 4th on the leaderboard.
We introduce a machine translation task where the output is aimed at audiences of different levels of target language proficiency. We collect a novel dataset of news articles available in English and Spanish and written for diverse reading grade levels. We leverage this dataset to train multitask sequence to sequence models that translate Spanish into English targeted at an easier reading grade level than the original Spanish. We show that multitask models outperform pipeline approaches that translate and simplify text independently.
This work introduces a machine translation task where the output is aimed at audiences of different levels of target language proficiency. We collect a high quality dataset of news articles available in English and Spanish, written for diverse grade levels and propose a method to align segments across comparable bilingual articles. The resulting dataset makes it possible to train multi-task sequence to sequence models that can translate and simplify text jointly. We show that these multi-task models outperform pipeline approaches that translate and simplify text independently.