Sumit Gulwani
2023
TSTR: Target Similarity Tuning Meets the Real World
Anirudh Khatry
|
Sumit Gulwani
|
Priyanshu Gupta
|
Vu Le
|
Mukul Singh
|
Ananya Singha
|
Gust Verbruggen
Findings of the Association for Computational Linguistics: EMNLP 2023
Target similarity tuning (TST) is a method of selecting relevant examples in natural language (NL) to code generation through large language models (LLMs) to improve performance. Its goal is to adapt a sentence embedding model to have the similarity between two NL inputs match the similarity between their associated code outputs. In this paper, we propose different methods to apply and improve TST in the real world. First, we replace the sentence transformer with embeddings from a larger model, which reduces sensitivity to the language distribution and thus provides more flexibility in synthetic generation of examples, and we train a tiny model that transforms these embeddings to a space where embedding similarity matches code similarity, which allows the model to remain a black box and only requires a few matrix multiplications at inference time. Second, we how to efficiently select a smaller number of training examples to train the TST model. Third, we introduce a ranking-based evaluation for TST that does not require end-to-end code generation experiments, which can be expensive to perform.
CodeFusion: A Pre-trained Diffusion Model for Code Generation
Mukul Singh
|
José Cambronero
|
Sumit Gulwani
|
Vu Le
|
Carina Negreanu
|
Gust Verbruggen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Imagine a developer who can only change their last line of code—how often would they have to start writing a function from scratch before it is correct? Auto-regressive models for code generation from natural language have a similar limitation: they do not easily allow reconsidering earlier tokens generated. We introduce CodeFusion, a pre-trained diffusion code generation model that addresses this limitation by iteratively denoising a complete program conditioned on the encoded natural language. We evaluate CodeFusion on the task of natural language to code generation for Bash, Python, and Microsoft Excel conditional formatting (CF) rules. Experiments show that CodeFusion (75M parameters) performs on par with state-of-the-art auto-regressive systems (350M-175B parameters) in top-1 accuracy and outperforms them in top-3 and top-5 accuracy due to its better balance in diversity versus quality.
Search
Co-authors
- Vu Le 2
- Mukul Singh 2
- Gust Verbruggen 2
- Anirudh Khatry 1
- Priyanshu Gupta 1
- show all...