Recognizing the layout of unstructured digital documents is crucial when parsing the documents into the structured, machine-readable format for downstream applications. Recent studies in Document Layout Analysis usually rely on visual cues to understand documents while ignoring other information, such as contextual information or the relationships between document layout components, which are vital to boost better layout analysis performance. Our Doc-GCN presents an effective way to harmonize and integrate heterogeneous aspects for Document Layout Analysis. We construct different graphs to capture the four main features aspects of document layout components, including syntactic, semantic, density, and appearance features. Then, we apply graph convolutional networks to enhance each aspect of features and apply the node-level pooling for integration. Finally, we concatenate features of all aspects and feed them into the 2-layer MLPs for document layout component classification. Our Doc-GCN achieves state-of-the-art results on three widely used DLA datasets: PubLayNet, FUNSD, and DocBank. The code will be released at
https://github.com/adlnlp/doc_gcnAttention mechanism has been used as an important component across Vision-and-Language(VL) tasks in order to bridge the semantic gap between visual and textual features. While attention has been widely used in VL tasks, it has not been examined the capability of different attention alignment calculation in bridging the semantic gap between visual and textual clues. In this research, we conduct a comprehensive analysis on understanding the role of attention alignment by looking into the attention score calculation methods and check how it actually represents the visual region’s and textual token’s significance for the global assessment. We also analyse the conditions which attention score calculation mechanism would be more (or less) interpretable, and which may impact the model performance on three different VL tasks, including visual question answering, text-to-image generation, text-and-image matching (both sentence and image retrieval). Our analysis is the first of its kind and provides useful insights of the importance of each attention alignment score calculation when applied at the training phase of VL tasks, commonly ignored in attention-based cross modal models, and/or pretrained models. Our code is available at:
https://github.com/adlnlp/Attention_VLDrug-drug interaction (DDI) may leads to adverse reactions in patients, thus it is important to extract such knowledge from biomedical texts. However, previously proposed approaches typically focus on capturing sentence-aspect information while ignoring valuable knowledge concerning the whole corpus. In this paper, we propose a Multi-aspect Graph-based DDI extraction model, named DDI-MuG. We first employ a bio-specific pre-trained language model to obtain the token contextualized representations. Then we use two graphs to get syntactic information from input instance and word co-occurrence information within the entire corpus, respectively. Finally, we combine the representations of drug entities and verb tokens for the final classification. It is encouraging to see that the proposed model outperforms all baseline models on two benchmark datasets. To the best of our knowledge, this is the first model that explores multi-aspect graphs to the DDI extraction task, and we hope it can establish a foundation for more robust multi-aspect works in the future.
Text-to-image multimodal tasks, generating/retrieving an image from a given text description, are extremely challenging tasks since raw text descriptions cover quite limited information in order to fully describe visually realistic images. We propose a new visual contextual text representation for text-to-image multimodal tasks, VICTR, which captures rich visual semantic information of objects from the text input. First, we use the text description as initial input and conduct dependency parsing to extract the syntactic structure and analyse the semantic aspect, including object quantities, to extract the scene graph. Then, we train the extracted objects, attributes, and relations in the scene graph and the corresponding geometric relation information using Graph Convolutional Networks, and it generates text representation which integrates textual and visual semantic information. The text representation is aggregated with word-level and sentence-level embedding to generate both visual contextual word and sentence representation. For the evaluation, we attached VICTR to the state-of-the-art models in text-to-image generation.VICTR is easily added to existing models and improves across both quantitative and qualitative aspects.
Online abusive language detection (ALD) has become a societal issue of increasing importance in recent years. Several previous works in online ALD focused on solving a single abusive language problem in a single domain, like Twitter, and have not been successfully transferable to the general ALD task or domain. In this paper, we introduce a new generic ALD framework, MACAS, which is capable of addressing several types of ALD tasks across different domains. Our generic framework covers multi-aspect abusive language embeddings that represent the target and content aspects of abusive language and applies a textual graph embedding that analyses the user’s linguistic behaviour. Then, we propose and use the cross-attention gate flow mechanism to embrace multiple aspects of abusive language. Quantitative and qualitative evaluation results show that our ALD algorithm rivals or exceeds the six state-of-the-art ALD algorithms across seven ALD datasets covering multiple aspects of abusive language and different online community domains.