Shu’ang Li

Also published as: Shuang Li


2024

pdf
On the Robustness of Document-Level Relation Extraction Models to Entity Name Variations
Shiao Meng | Xuming Hu | Aiwei Liu | Fukun Ma | Yawen Yang | Shuang Li | Lijie Wen
Findings of the Association for Computational Linguistics ACL 2024

Driven by the demand for cross-sentence and large-scale relation extraction, document-level relation extraction (DocRE) has attracted increasing research interest. Despite the continuous improvement in performance, we find that existing DocRE models which initially perform well may make more mistakes when merely changing the entity names in the document, hindering the generalization to novel entity names. To this end, we systematically investigate the robustness of DocRE models to entity name variations in this work. We first propose a principled pipeline to generate entity-renamed documents by replacing the original entity names with names from Wikidata. By applying the pipeline to DocRED and Re-DocRED datasets, we construct two novel benchmarks named Env-DocRED and Env-Re-DocRED for robustness evaluation. Experimental results show that both three representative DocRE models and two in-context learned large language models consistently lack sufficient robustness to entity name variations, particularly on cross-sentence relation instances and documents with more entities. Finally, we propose an entity variation robust training method which not only improves the robustness of DocRE models but also enhances their understanding and reasoning capabilities. We further verify that the basic idea of this method can be effectively transferred to in-context learning for DocRE as well.

pdf
Enhancing Reinforcement Learning with Label-Sensitive Reward for Natural Language Understanding
Kuo Liao | Shuang Li | Meng Zhao | Liqun Liu | Mengge Xue | Zhenyu Hu | Honglin Han | Chengguo Yin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent strides in large language models (LLMs) have yielded remarkable performance, leveraging reinforcement learning from human feedback (RLHF) to significantly enhance generation and alignment capabilities. However, RLHF encounters numerous challenges, including the objective mismatch issue, leading to suboptimal performance in Natural Language Understanding (NLU) tasks.To address this limitation, we propose a novel Reinforcement Learning framework enhanced with Label-sensitive Reward (RLLR) to amplify the performance of LLMs in NLU tasks. By incorporating label-sensitive pairs into reinforcement learning, our method aims to adeptly capture nuanced label-sensitive semantic features during RL, thereby enhancing natural language understanding.Experiments conducted on five diverse foundation models across eight tasks showcase promising results. In comparison to Supervised Fine-tuning models (SFT), RLLR demonstrates an average performance improvement of 1.54%. Compared with RLHF models, the improvement averages at 0.69%. These results reveal the effectiveness of our method for LLMs in NLU tasks.

pdf
Strengthened Symbol Binding Makes Large Language Models Reliable Multiple-Choice Selectors
Mengge Xue | Zhenyu Hu | Liqun Liu | Kuo Liao | Shuang Li | Honglin Han | Meng Zhao | Chengguo Yin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multiple-Choice Questions (MCQs) constitute a critical area of research in the study of Large Language Models (LLMs). Previous works have investigated the selection bias problem in MCQs within few-shot scenarios, in which the LLM’s performance may be influenced by the presentation of answer choices, leaving the selection bias during Supervised Fine-Tuning (SFT) unexplored. In this paper, we reveal that selection bias persists in the SFT phase , primarily due to the LLM’s inadequate Multiple Choice Symbol Binding (MCSB) ability. This limitation implies that the model struggles to associate the answer options with their corresponding symbols (e.g., A/B/C/D) effectively. To enhance the model’s MCSB capability, we first incorporate option contents into the loss function and subsequently adjust the weights of the option symbols and contents, guiding the model to understand the option content of the current symbol. Based on this, we introduce an efficient SFT algorithm for MCQs, termed Point-wise Intelligent Feedback (PIF). PIF constructs negative instances by randomly combin- ing the incorrect option contents with all candidate symbols, and proposes a point-wise loss to provide feedback on these negative samples into LLMs. Our experimental results demonstrate that PIF significantly reduces the model’s selection bias by improving its MCSB capability. Remarkably, PIF exhibits a substantial enhancement in the accuracy for MCQs.

2023

pdf
Exploring the Compositional Generalization in Context Dependent Text-to-SQL Parsing
Aiwei Liu | Wei Liu | Xuming Hu | Shuang Li | Fukun Ma | Yawen Yang | Lijie Wen
Findings of the Association for Computational Linguistics: ACL 2023

In the context-dependent Text-to-SQL task, the generated SQL statements are refined iteratively based on the user input utterance from each interaction. The input text from each interaction can be viewed as component modifications to the previous SQL statements, which could be further extracted as the modification patterns. Since these modification patterns could also be combined with other SQL statements, the models are supposed to have the compositional generalization to these novel combinations. This work is the first exploration of compositional generalization in context-dependent Text-to-SQL scenarios. To facilitate related studies, we constructed two challenging benchmarks named CoSQL-CG and SParC-CG by recombining the modification patterns and existing SQL statements. The following experiments show that almost all current models struggle on our proposed benchmarks. Furthermore, we found that better aligning the previous SQL statements with the input utterance could give models better combinatorial generalization ability. Based on these observations, we propose a method name p-align to improve the combinatorial generalization of Text-to-SQL models. Further experiments validate the effectiveness of our model.

pdf
Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer
Shuang Li | Xuming Hu | Aiwei Liu | Yawen Yang | Fukun Ma | Philip S. Yu | Lijie Wen
Findings of the Association for Computational Linguistics: ACL 2023

Cross-lingual natural language inference is a fundamental problem in cross-lingual language understanding. Many recent works have used prompt learning to address the lack of annotated parallel corpora in XNLI.However, these methods adopt discrete prompting by simply translating the templates to the target language and need external expert knowledge to design the templates. Besides, discrete prompts of human-designed template words are not trainable vectors and can not be migrated to target languages in the inference stage flexibly. In this paper, we propose a novel Soft prompt learning framework with the Multilingual Verbalizer (SoftMV) for XNLI. SoftMV first constructs cloze-style question with soft prompts for the input sample. Then we leverage bilingual dictionaries to generate an augmented multilingual question for the original question. SoftMV adopts a multilingual verbalizer to align the representations of original and augmented multilingual questions into a unified semantic space with consistency regularization. Experimental results on XNLI demonstrate that SoftMV can achieve state-of-the-art performance and significantly outperform the previous methods under the few-shot and full-shot cross-lingual transfer settings.

pdf
RAPL: A Relation-Aware Prototype Learning Approach for Few-Shot Document-Level Relation Extraction
Shiao Meng | Xuming Hu | Aiwei Liu | Shuang Li | Fukun Ma | Yawen Yang | Lijie Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

How to identify semantic relations among entities in a document when only a few labeled documents are available? Few-shot document-level relation extraction (FSDLRE) is crucial for addressing the pervasive data scarcity problem in real-world scenarios. Metric-based meta-learning is an effective framework widely adopted for FSDLRE, which constructs class prototypes for classification. However, existing works often struggle to obtain class prototypes with accurate relational semantics: 1) To build prototype for a target relation type, they aggregate the representations of all entity pairs holding that relation, while these entity pairs may also hold other relations, thus disturbing the prototype. 2) They use a set of generic NOTA (none-of-the-above) prototypes across all tasks, neglecting that the NOTA semantics differs in tasks with different target relation types. In this paper, we propose a relation-aware prototype learning method for FSDLRE to strengthen the relational semantics of prototype representations. By judiciously leveraging the relation descriptions and realistic NOTA instances as guidance, our method effectively refines the relation prototypes and generates task-specific NOTA prototypes. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches by average 2.61% F1 across various settings of two FSDLRE benchmarks.

pdf
AMR-based Network for Aspect-based Sentiment Analysis
Fukun Ma | Xuming Hu | Aiwei Liu | Yawen Yang | Shuang Li | Philip S. Yu | Lijie Wen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment classification task. Many recent works have used dependency trees to extract the relation between aspects and contexts and have achieved significant improvements. However, further improvement is limited due to the potential mismatch between the dependency tree as a syntactic structure and the sentiment classification as a semantic task. To alleviate this gap, we replace the syntactic dependency tree with the semantic structure named Abstract Meaning Representation (AMR) and propose a model called AMR-based Path Aggregation Relational Network (APARN) to take full advantage of semantic structures. In particular, we design the path aggregator and the relation-enhanced self-attention mechanism that complement each other. The path aggregator extracts semantic features from AMRs under the guidance of sentence information, while the relation-enhanced self-attention mechanism in turn improves sentence features with refined semantic information. Experimental results on four public datasets demonstrate 1.13% average F1 improvement of APARN in ABSA when compared with state-of-the-art baselines.

2022

pdf
Character-level White-Box Adversarial Attacks against Transformers via Attachable Subwords Substitution
Aiwei Liu | Honghai Yu | Xuming Hu | Shu’ang Li | Li Lin | Fukun Ma | Yawen Yang | Lijie Wen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We propose the first character-level white-box adversarial attack method against transformer models. The intuition of our method comes from the observation that words are split into subtokens before being fed into the transformer models and the substitution between two close subtokens has a similar effect with the character modification. Our method mainly contains three steps. First, a gradient-based method is adopted to find the most vulnerable words in the sentence. Then we split the selected words into subtokens to replace the origin tokenization result from the transformer tokenizer. Finally, we utilize an adversarial loss to guide the substitution of attachable subtokens in which the Gumbel-softmax trick is introduced to ensure gradient propagation.Meanwhile, we introduce the visual and length constraint in the optimization process to achieve minimum character modifications.Extensive experiments on both sentence-level and token-level tasks demonstrate that our method could outperform the previous attack methods in terms of success rate and edit distance. Furthermore, human evaluation verifies our adversarial examples could preserve their origin labels.

pdf
HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction
Shuliang Liu | Xuming Hu | Chenwei Zhang | Shu’ang Li | Lijie Wen | Philip Yu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution. Existing works either utilize self-supervised schemes to refine relational feature signals by iteratively leveraging adaptive clustering and classification that provoke gradual drift problems, or adopt instance-wise contrastive learning which unreasonably pushes apart those sentence pairs that are semantically similar. To overcome these defects, we propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention and effectively optimize relation representation of sentences under exemplar-wise contrastive learning. Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.