Shruthi Hariprasad
2022
SSN_MLRG1@DravidianLangTech-ACL2022: Troll Meme Classification in Tamil using Transformer Models
Shruthi Hariprasad
|
Sarika Esackimuthu
|
Saritha Madhavan
|
Rajalakshmi Sivanaiah
|
Angel S
Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages
The ACL shared task of DravidianLangTech-2022 for Troll Meme classification is a binary classification task that involves identifying Tamil memes as troll or not-troll. Classification of memes is a challenging task since memes express humour and sarcasm in an implicit way. Team SSN_MLRG1 tested and compared results obtained by using three models namely BERT, ALBERT and XLNET. The XLNet model outperformed the other two models in terms of various performance metrics. The proposed XLNet model obtained the 3rd rank in the shared task with a weighted F1-score of 0.558.
SSN_MLRG3 @LT-EDI-ACL2022-Depression Detection System from Social Media Text using Transformer Models
Sarika Esackimuthu
|
Shruthi Hariprasad
|
Rajalakshmi Sivanaiah
|
Angel S
|
Sakaya Milton Rajendram
|
Mirnalinee T T
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
Depression is a common mental illness that involves sadness and lack of interest in all day-to-day activities. The task is to classify the social media text as signs of depression into three labels namely “not depressed”, “moderately depressed”, and “severely depressed”. We have build a system using Deep Learning Model “Transformers”. Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio. The multi-class classification model used in our system is based on the ALBERT model. In the shared task ACL 2022, Our team SSN_MLRG3 obtained a Macro F1 score of 0.473.
Search