This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In this work, we evaluate the adaptability of neural agents towards assumed partner behaviors in a collaborative reference game. In this game, success is achieved when a knowledgeable guide can verbally lead a follower to the selection of a specific puzzle piece among several distractors. We frame this language grounding and coordination task as a reinforcement learning problem and measure to which extent a common reinforcement training algorithm (PPO) is able to produce neural agents (the guides) that perform well with various heuristic follower behaviors that vary along the dimensions of confidence and autonomy. We experiment with a learning signal that in addition to the goal condition also respects an assumed communicative effort. Our results indicate that this novel ingredient leads to communicative strategies that are less verbose (staying silent in some of the steps) and that with respect to that the guide’s strategies indeed adapt to the partner’s level of confidence and autonomy.
This paper introduces a novel approach to form-filling and dialogue system evaluation by leveraging Large Language Models (LLMs). The proposed method establishes a setup wherein multiple modules collaborate on addressing the form-filling task. The dialogue system is constructed on top of LLMs, focusing on defining specific roles for individual modules. We show that using multiple independent sub-modules working cooperatively on this task can improve performance and handle the typical constraints of using LLMs, such as context limitations. The study involves testing the modular setup on four selected forms of varying topics and lengths, employing commercial and open-access LLMs. The experimental results demonstrate that the modular setup consistently outperforms the baseline, showcasing the effectiveness of this approach. Furthermore, our findings reveal that open-access models perform comparably to commercial models for the specified task.
In recent years, multimodal natural language processing, aimed at learning from diverse data types, has garnered significant attention. However, there needs to be more clarity when it comes to analysing multimodal tasks in multi-lingual contexts. While prior studies on sentiment analysis of tweets have predominantly focused on the English language, this paper addresses this gap by transforming an existing textual Twitter sentiment dataset into a multimodal format through a straightforward curation process. Our work opens up new avenues for sentiment-related research within the research community. Additionally, we conduct baseline experiments utilising this augmented dataset and report the findings. Notably, our evaluations reveal that when comparing unimodal and multimodal configurations, using a sentiment-tuned large language model as a text encoder performs exceptionally well.
In collaborative goal-oriented settings, the participants are not only interested in achieving a successful outcome, but do also implicitly negotiate the effort they put into the interaction (by adapting to each other). In this work, we propose a challenging interactive reference game that requires two players to coordinate on vision and language observations. The learning signal in this game is a score (given after playing) that takes into account the achieved goal and the players’ assumed efforts during the interaction. We show that a standard Proximal Policy Optimization (PPO) setup achieves a high success rate when bootstrapped with heuristic partner behaviors that implement insights from the analysis of human-human interactions. And we find that a pairing of neural partners indeed reduces the measured joint effort when playing together repeatedly. However, we observe that in comparison to a reasonable heuristic pairing there is still room for improvement—which invites further research in the direction of cost-sharing in collaborative interactions.
The ability to pick up on language signals in an ongoing interaction is crucial for future machine learning models to collaborate and interact with humans naturally. In this paper, we present an initial study that evaluates intra-episodic feedback given in a collaborative setting. We use a referential language game as a controllable example of a task-oriented collaborative joint activity. A teacher utters a referring expression generated by a well-known symbolic algorithm (the “Incremental Algorithm”) as an initial instruction and then monitors the follower’s actions to possibly intervene with intra-episodic feedback (which does not explicitly have to be requested). We frame this task as a reinforcement learning problem with sparse rewards and learn a follower policy for a heuristic teacher. Our results show that intra-episodic feedback allows the follower to generalize on aspects of scene complexity and performs better than providing only the initial statement.
Large language models have demonstrated robust performance on various language tasks using zero-shot or few-shot learning paradigms. While being actively researched, multimodal models that can additionally handle images as input have yet to catch up in size and generality with language-only models. In this work, we ask whether language-only models can be utilised for tasks that require visual input – but also, as we argue, often require a strong reasoning component. Similar to some recent related work, we make visual information accessible to the language model using separate verbalisation models. Specifically, we investigate the performance of open-source, open-access language models against GPT-3 on five vision-language tasks when given textually-encoded visual information. Our results suggest that language models are effective for solving vision-language tasks even with limited samples. This approach also enhances the interpretability of a model’s output by providing a means of tracing the output back through the verbalised image content.
Recent work has proposed a methodology for the systematic evaluation of “Situated Language Understanding Agents” — agents that operate in rich linguistic and non-linguistic contexts — through testing them in carefully constructed interactive settings. Other recent work has argued that Large Language Models (LLMs), if suitably set up, can be understood as (simulators of) such agents. A connection suggests itself, which this paper explores: Can LLMs be evaluated meaningfully by exposing them to constrained game-like settings that are built to challenge specific capabilities? As a proof of concept, this paper investigates five interaction settings, showing that current chat-optimised LLMs are, to an extent, capable of following game-play instructions. Both this capability and the quality of the game play, measured by how well the objectives of the different games are met, follows the development cycle, with newer models generally performing better. The metrics even for the comparatively simple example games are far from being saturated, suggesting that the proposed instrument will remain to have diagnostic value.
The detection of offensive, hateful content on social media is a challenging problem that affects many online users on a daily basis. Hateful content is often used to target a group of people based on ethnicity, gender, religion and other factors. The hate or contempt toward women has been increasing on social platforms. Misogynous content detection is especially challenging when textual and visual modalities are combined to form a single context, e.g., an overlay text embedded on top of an image, also known as meme. In this paper, we present a multimodal architecture that combines textual and visual features to detect misogynous memes. The proposed architecture is evaluated in the SemEval-2022 Task 5: MAMI - Multimedia Automatic Misogyny Identification challenge under the team name TIB-VA. We obtained the best result in the Task-B where the challenge is to classify whether a given document is misogynous and further identify the following sub-classes: shaming, stereotype, objectification, and violence.
In recent years, the problem of misinformation on the web has become widespread across languages, countries, and various social media platforms. Although there has been much work on automated fake news detection, the role of images and their variety are not well explored. In this paper, we investigate the roles of image and text at an earlier stage of the fake news detection pipeline, called claim detection. For this purpose, we introduce a novel dataset, MM-Claims, which consists of tweets and corresponding images over three topics: COVID-19, Climate Change and broadly Technology. The dataset contains roughly 86000 tweets, out of which 3400 are labeled manually by multiple annotators for the training and evaluation of multimodal models. We describe the dataset in detail, evaluate strong unimodal and multimodal baselines, and analyze the potential and drawbacks of current models.