Knowledge-based Visual Question Generation aims to generate visual questions with outside knowledge other than the image. Existing approaches are answer-aware, which incorporate answers into the question-generation process. However, these methods just focus on leveraging the semantics of inputs to propose questions, ignoring the logical coherence among generated questions (Q), images (V), answers (A), and corresponding acquired outside knowledge (K). It results in generating many non-expected questions with low quality, lacking insight and diversity, and some of them are even without any corresponding answer. To address this issue, we inject logical verification into the processes of knowledge acquisition and question generation, which is defined as LVˆ2-Net. Through checking the logical structure among V, A, K, ground-truth and generated Q twice in the whole KB-VQG procedure, LVˆ2-Net can propose diverse and insightful knowledge-based visual questions. And experimental results on two commonly used datasets demonstrate the superiority of LVˆ2-Net. Our code will be released to the public soon.
Multimodal aspect-based sentiment analysis (MABSA) aims to extract aspects from text-image pairs and recognize their sentiments. Existing methods make great efforts to align the whole image to corresponding aspects. However, different regions of the image may relate to different aspects in the same sentence, and coarsely establishing image-aspect alignment will introduce noise to aspect-based sentiment analysis (i.e., visual noise). Besides, the sentiment of a specific aspect can also be interfered by descriptions of other aspects (i.e., textual noise). Considering the aforementioned noises, this paper proposes an Aspect-oriented Method (AoM) to detect aspect-relevant semantic and sentiment information. Specifically, an aspect-aware attention module is designed to simultaneously select textual tokens and image blocks that are semantically related to the aspects. To accurately aggregate sentiment information, we explicitly introduce sentiment embedding into AoM, and use a graph convolutional network to model the vision-text and text-text interaction. Extensive experiments demonstrate the superiority of AoM to existing methods.
Concept Learning requires learning the definition of a general category from given training examples. Most of the existing methods focus on learning concepts from images. However, the visual information cannot present abstract concepts exactly, which struggles the introduction of novel concepts related to known concepts (e.g., ‘Plant’→‘Asteroids’). In this paper, inspired by the fact that humans learn most concepts through linguistic description, we introduce Linguistic Concept Learning benchmark (Licon), where concepts in diverse forms (e.g., plain attributes, images, and text) are defined by linguistic descriptions. The difficulty to learn novel concepts can be controlled by the number of attributes or the hierarchical relationships between concepts. The diverse and controllable concepts are used to support challenging evaluation tasks, including concept classification, attribute prediction, and concept relationship recognition. In addition, we design an entailment-based concept learning method (EnC) to model the relationship among concepts. Extensive experiments demonstrate the effectiveness of EnC. The benchmark will be released to the public soon.