Sen Wang


2024

pdf
Event-Content-Oriented Dialogue Generation in Short Video
Fenghua Cheng | Xue Li | Zi Huang | Jinxiang Wang | Sen Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Understanding complex events from different modalities, associating to external knowledge and generating response in a clear point of view are still unexplored in today’s multi-modal dialogue research. The great challenges include 1) lack of event-based multi-modal dialogue dataset; 2) understanding of complex events and 3) heterogeneity gap between different modalities. To overcome these challenges, we firstly introduce a novel event-oriented video-dialogue dataset called SportsVD (Sports-domain Video-dialogue Dataset). To our best knowledge, SportsVD is the first dataset that consists of complex events videos and opinion-based conversations with regards to contents in these events. Meanwhile, we present multi-modal dialogue generation method VCD (Video Commentary Dialogue) to generate human-like response according to event contents in the video and related external knowledge. In contrast to previous video-based dialogue generation, we focus on opinion-based response and the understanding of longer and more complex event contents. We evaluate VCD’s performance on SportsVD and other baselines under several automatic metrics. Experiments demonstrate VCD can outperform among other state-of-the-art baselines. Our work is available at https://github.com/Cheng-Fenghua/SportsVD.

2021

pdf
QuadrupletBERT: An Efficient Model For Embedding-Based Large-Scale Retrieval
Peiyang Liu | Sen Wang | Xi Wang | Wei Ye | Shikun Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

The embedding-based large-scale query-document retrieval problem is a hot topic in the information retrieval (IR) field. Considering that pre-trained language models like BERT have achieved great success in a wide variety of NLP tasks, we present a QuadrupletBERT model for effective and efficient retrieval in this paper. Unlike most existing BERT-style retrieval models, which only focus on the ranking phase in retrieval systems, our model makes considerable improvements to the retrieval phase and leverages the distances between simple negative and hard negative instances to obtaining better embeddings. Experimental results demonstrate that our QuadrupletBERT achieves state-of-the-art results in embedding-based large-scale retrieval tasks.

pdf
Improving Embedding-based Large-scale Retrieval via Label Enhancement
Peiyang Liu | Xi Wang | Sen Wang | Wei Ye | Xiangyu Xi | Shikun Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Current embedding-based large-scale retrieval models are trained with 0-1 hard label that indicates whether a query is relevant to a document, ignoring rich information of the relevance degree. This paper proposes to improve embedding-based retrieval from the perspective of better characterizing the query-document relevance degree by introducing label enhancement (LE) for the first time. To generate label distribution in the retrieval scenario, we design a novel and effective supervised LE method that incorporates prior knowledge from dynamic term weighting methods into contextual embeddings. Our method significantly outperforms four competitive existing retrieval models and its counterparts equipped with two alternative LE techniques by training models with the generated label distribution as auxiliary supervision information. The superiority can be easily observed on English and Chinese large-scale retrieval tasks under both standard and cold-start settings.