This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ≈ 5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.
This article introduces a resource-efficient method for developing question-answer (QA) datasets by extracting QA pairs from web-scale data using machine learning (ML). Our method benefits from recent advances in web register (genre) identification and consists of two ML steps with an additional post-processing step. First, using XLM-R and the multilingual CORE web register corpus series with categories such as QA Forum, we train a multilingual classifier to retrieve documents that are likely to contain QA pairs from web-scale data. Second, we develop a NER-style token classifier to identify the QA text spans within these documents. To this end, we experiment with training on a semi-synthetic dataset built on top of the English LFQA, a small set of manually cleaned web QA pairs in English and Finnish, and a Finnish web QA pair dataset cleaned using ChatGPT. The evaluation of our pipeline demonstrates its capability to efficiently retrieve a substantial volume of QA pairs. While the approach is adaptable to any language given the availability of language models and extensive web data, we showcase its efficiency in English and Finnish, developing the first open, non-synthetic and non-machine translated QA dataset for Finnish – Turku WebQA – comprising over 200,000 QA pairs.
Relation Extraction (RE) remains a challenging task, especially when considering realistic out-of-domain evaluations. One of the main reasons for this is the limited training size of current RE datasets: obtaining high-quality (manually annotated) data is extremely expensive and cannot realistically be repeated for each new domain. An intermediate training step on data from related tasks has shown to be beneficial across many NLP tasks. However, this setup still requires supplementary annotated data, which is often not available. In this paper, we investigate intermediate pre-training specifically for RE. We exploit the affinity between syntactic structure and semantic RE, and identify the syntactic relations which are closely related to RE by being on the shortest dependency path between two entities. We then take advantage of the high accuracy of current syntactic parsers in order to automatically obtain large amounts of low-cost pre-training data. By pre-training our RE model on the relevant syntactic relations, we are able to outperform the baseline in five out of six cross-domain setups, without any additional annotated data.
Most research in Relation Extraction (RE) involves the English language, mainly due to the lack of multi-lingual resources. We propose Multi-CrossRE, the broadest multi-lingual dataset for RE, including 26 languages in addition to English, and covering six text domains. Multi-CrossRE is a machine translated version of CrossRE (Bassignana and Plank, 2022), with a sub-portion including more than 200 sentences in seven diverse languages checked by native speakers. We run a baseline model over the 26 new datasets and–as sanity check–over the 26 back-translations to English. Results on the back-translated data are consistent with the ones on the original English CrossRE, indicating high quality of the translation and the resulting dataset.
Due to the popularity of social media platforms and the sheer amount of user-generated content online, the automatic detection of toxic language has become crucial in the creation of a friendly and safe digital space. Previous work has been mostly focusing on English leaving many lower-resource languages behind. In this paper, we present novel resources for toxicity detection in Finnish by introducing two new datasets, a machine translated toxicity dataset for Finnish based on the widely used English Jigsaw dataset and a smaller test set of Suomi24 discussion forum comments originally written in Finnish and manually annotated following the definitions of the labels that were used to annotate the Jigsaw dataset. We show that machine translating the training data to Finnish provides better toxicity detection results than using the original English training data and zero-shot cross-lingual transfer with XLM-R, even with our newly annotated dataset from Suomi24.
Large language models (LLMs) excel in many tasks in NLP and beyond, but most open models have very limited coverage of smaller languages and LLM work tends to focus on languages where nearly unlimited data is available for pretraining. In this work, we study the challenges of creating LLMs for Finnish, a language spoken by less than 0.1% of the world population. We compile an extensive dataset of Finnish combining web crawls, news, social media and eBooks. We pursue two approaches to pretrain models: 1) we train seven monolingual models from scratch (186M to 13B parameters) dubbed FinGPT, 2) we continue the pretraining of the multilingual BLOOM model on a mix of its original training data and Finnish, resulting in a 176 billion parameter model we call BLUUMI. For model evaluation, we introduce FIN-bench, a version of BIG-bench with Finnish tasks. We also assess other model qualities such as toxicity and bias. Our models and tools are openly available at https://turkunlp.org/gpt3-finnish.
Web-crawled datasets are known to be noisy, as they feature a wide range of language use covering both user-generated and professionally edited content as well as noise originating from the crawling process. This article presents one solution to reduce this noise by using automatic register (genre) identification -whether the texts are, e.g., forum discussions, lyrical or how-to pages. We apply the multilingual register identification model by Rönnqvist et al. (2021) and label the widely used Oscar dataset. Additionally, we evaluate the model against eight new languages, showing that the performance is comparable to previous findings on a restricted set of languages. Finally, we present and apply a machine learning method for further cleaning text files originating from Web crawls from remains of boilerplate and other elements not belonging to the main text of the Web page. The register labeled and cleaned dataset covers 351 million documents in 14 languages and is available at https://huggingface.co/datasets/TurkuNLP/register_oscar.
We explore cross-lingual transfer of register classification for web documents. Registers, that is, text varieties such as blogs or news are one of the primary predictors of linguistic variation and thus affect the automatic processing of language. We introduce two new register-annotated corpora, FreCORE and SweCORE, for French and Swedish. We demonstrate that deep pre-trained language models perform strongly in these languages and outperform previous state-of-the-art in English and Finnish. Specifically, we show 1) that zero-shot cross-lingual transfer from the large English CORE corpus can match or surpass previously published monolingual models, and 2) that lightweight monolingual classification requiring very little training data can reach or surpass our zero-shot performance. We further analyse classification results finding that certain registers continue to pose challenges in particular for cross-lingual transfer.
Deep neural language models such as BERT have enabled substantial recent advances in many natural language processing tasks. However, due to the effort and computational cost involved in their pre-training, such models are typically introduced only for a small number of high-resource languages such as English. While multilingual models covering large numbers of languages are available, recent work suggests monolingual training can produce better models, and our understanding of the tradeoffs between mono- and multilingual training is incomplete. In this paper, we introduce a simple, fully automated pipeline for creating language-specific BERT models from Wikipedia data and introduce 42 new such models, most for languages up to now lacking dedicated deep neural language models. We assess the merits of these models using cloze tests and the state-of-the-art UDify parser on Universal Dependencies data, contrasting performance with results using the multilingual BERT (mBERT) model. We find that the newly introduced WikiBERT models outperform mBERT in cloze tests for nearly all languages, and that UDify using WikiBERT models outperforms the parser using mBERT on average, with the language-specific models showing substantially improved performance for some languages, yet limited improvement or a decrease in performance for others. All of the methods and models introduced in this work are available under open licenses from https://github.com/turkunlp/wikibert.
We introduce a corpus with fine-grained named entity annotation for Finnish, following the OntoNotes guidelines to create a resource that is cross-lingually compatible with existing annotations for other languages. We combine and extend two NER corpora recently introduced for Finnish and revise their custom annotation scheme through a combination of automatic and manual processing steps. The resulting corpus consists of nearly 500,000 tokens annotated for over 50,000 mentions categorized into the 18 OntoNotes name and numeric entity types. We evaluate this resource and demonstrate its compatibility with the English OntoNotes annotations by training state-of-the-art mono-, bi- and multilingual deep learning models, finding both that the corpus allows highly accurate recognition of OntoNotes types at 93% F-score and that a comparable level of tagging accuracy can be achieved by a bilingual Finnish-English NER model.
Large-scale pretrained language models have become ubiquitous in Natural Language Processing. However, most of these models are available either in high-resource languages, in particular English, or as multilingual models that compromise performance on individual languages for coverage. This paper introduces Romanian BERT, the first purely Romanian transformer-based language model, pretrained on a large text corpus. We discuss corpus com-position and cleaning, the model training process, as well as an extensive evaluation of the model on various Romanian datasets. We opensource not only the model itself, but also a repository that contains information on how to obtain the corpus, fine-tune and use this model in production (with practical examples), and how to fully replicate the evaluation process.
We present the approach of the TurkuNLP group to the IWPT 2020 shared task on Multilingual Parsing into Enhanced Universal Dependencies. The task involves 28 treebanks in 17 different languages and requires parsers to generate graph structures extending on the basic dependency trees. Our approach combines language-specific BERT models, the UDify parser, neural sequence-to-sequence lemmatization and a graph transformation approach encoding the enhanced structure into a dependency tree. Our submission averaged 84.5% ELAS, ranking first in the shared task. We make all methods and resources developed for this study freely available under open licenses from https://turkunlp.org.
The web presents unprecedented opportunities for large-scale collection of text in many languages. However, two critical steps in the development of web corpora remain challenging: the identification of clean text from source HTML and the assignment of genre or register information to the documents. In this paper, we evaluate a multilingual approach to this end. Our starting points are the Swedish and French Common Crawl datasets gathered for the 2017 CoNLL shared task, particularly the URLs. We 1) fetch HTML pages based on the URLs and run boilerplate removal, 2) train a classifier to further clean out undesired text fragments, and 3) annotate text registers. We compare boilerplate removal against the CoNLL texts, and find an improvement. For the further cleaning of undesired material, the best results are achieved using Multilingual BERT with monolingual fine-tuning. However, our results are promising also in a cross-lingual setting, without fine-tuning on the target language. Finally, the register annotations show that most of the documents belong to a relatively small set of registers, which are relatively similar in the two languages. A number of additional flags in the annotation are, however, necessary to reflect the wide range of linguistic variation associated with the documents.
Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. The annotation consists in a linguistically motivated word segmentation; a morphological layer comprising lemmas, universal part-of-speech tags, and standardized morphological features; and a syntactic layer focusing on syntactic relations between predicates, arguments and modifiers. In this paper, we describe version 2 of the universal guidelines (UD v2), discuss the major changes from UD v1 to UD v2, and give an overview of the currently available treebanks for 90 languages.
We present a new manually annotated corpus for broad-coverage named entity recognition for Finnish. Building on the original Universal Dependencies Finnish corpus of 754 documents (200,000 tokens) representing ten different genres of text, we introduce annotation marking person, organization, location, product and event names as well as dates. The new annotation identifies in total over 10,000 mentions. An evaluation of inter-annotator agreement indicates that the quality and consistency of annotation are high, at 94.5% F-score for exact match. A comprehensive evaluation using state-of-the-art machine learning methods demonstrates that the new resource maintains compatibility with a previously released single-domain corpus for Finnish NER and makes it possible to recognize named entity mentions in texts drawn from most domains at precision and recall approaching or exceeding 90%. Remaining challenges such as the identification of names in blog posts and transcribed speech are also identified. The newly introduced Turku NER corpus and related resources introduced in this work are released under open licenses via https://turkunlp.org/turku-ner-corpus .
Named entity recognition (NER) is frequently addressed as a sequence classification task with each input consisting of one sentence of text. It is nevertheless clear that useful information for NER is often found also elsewhere in text. Recent self-attention models like BERT can both capture long-distance relationships in input and represent inputs consisting of several sentences. This creates opportunities for adding cross-sentence information in natural language processing tasks. This paper presents a systematic study exploring the use of cross-sentence information for NER using BERT models in five languages. We find that adding context as additional sentences to BERT input systematically increases NER performance. Multiple sentences in input samples allows us to study the predictions of the sentences in different contexts. We propose a straightforward method, Contextual Majority Voting (CMV), to combine these different predictions and demonstrate this to further increase NER performance. Evaluation on established datasets, including the CoNLL’02 and CoNLL’03 NER benchmarks, demonstrates that our proposed approach can improve on the state-of-the-art NER results on English, Dutch, and Finnish, achieves the best reported BERT-based results on German, and is on par with other BERT-based approaches in Spanish. We release all methods implemented in this work under open licenses.
We present the approach of the Turku NLP group to the PharmaCoNER task on Spanish biomedical named entity recognition. We apply a CRF-based baseline approach and multilingual BERT to the task, achieving an F-score of 88% on the development data and 87% on the test set with BERT. Our approach reflects a straightforward application of a state-of-the-art multilingual model that is not specifically tailored to either the language nor the application domain. The source code is available at: https://github.com/chaanim/pharmaconer
As part of the BioNLP Open Shared Tasks 2019, the CRAFT Shared Tasks 2019 provides a platform to gauge the state of the art for three fundamental language processing tasks — dependency parse construction, coreference resolution, and ontology concept identification — over full-text biomedical articles. The structural annotation task requires the automatic generation of dependency parses for each sentence of an article given only the article text. The coreference resolution task focuses on linking coreferring base noun phrase mentions into chains using the symmetrical and transitive identity relation. The ontology concept annotation task involves the identification of concept mentions within text using the classes of ten distinct ontologies in the biomedical domain, both unmodified and augmented with extension classes. This paper provides an overview of each task, including descriptions of the data provided to participants and the evaluation metrics used, and discusses participant results relative to baseline performances for each of the three tasks.
We present the approach taken by the TurkuNLP group in the CRAFT Structural Annotation task, a shared task on dependency parsing. Our approach builds primarily on the Turku neural parser, a native dependency parser that ranked among the best in the recent CoNLL tasks on parsing Universal Dependencies. To adapt the parser to the biomedical domain, we considered and evaluated a number of approaches, including the generation of custom word embeddings, combination with other in-domain resources, and the incorporation of information from named entity recognition. We achieved a labeled attachment score of 89.7%, the best result among task participants.
We consider cross- and multilingual text classification approaches to the identification of online registers (genres), i.e. text varieties with specific situational characteristics. Register is the most important predictor of linguistic variation, and register information could improve the potential of online data for many applications. We introduce the first manually annotated non-English corpus of online registers featuring the full range of linguistic variation found online. The data set consists of 2,237 Finnish documents and follows the register taxonomy developed for the Corpus of Online Registers of English (CORE). Using CORE and the newly introduced corpus, we demonstrate the feasibility of cross-lingual register identification using a simple approach based on convolutional neural networks and multilingual word embeddings. We further find that register identification results can be improved through multilingual training even when a substantial number of annotations is available in the target language.
The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, the task was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe how the data sets were prepared, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.
Methods based on deep learning approaches have recently achieved state-of-the-art performance in a range of machine learning tasks and are increasingly applied to natural language processing (NLP). Despite strong results in various established NLP tasks involving general domain texts, there is only limited work applying these models to biomedical NLP. In this paper, we consider a Convolutional Neural Network (CNN) approach to biomedical text classification. Evaluation using a recently introduced cancer domain dataset involving the categorization of documents according to the well-established hallmarks of cancer shows that a basic CNN model can achieve a level of performance competitive with a Support Vector Machine (SVM) trained using complex manually engineered features optimized to the task. We further show that simple modifications to the CNN hyperparameters, initialization, and training process allow the model to notably outperform the SVM, establishing a new state of the art result at this task. We make all of the resources and tools introduced in this study available under open licenses from https://cambridgeltl.github.io/cancer-hallmark-cnn/.
Cross-linguistically consistent annotation is necessary for sound comparative evaluation and cross-lingual learning experiments. It is also useful for multilingual system development and comparative linguistic studies. Universal Dependencies is an open community effort to create cross-linguistically consistent treebank annotation for many languages within a dependency-based lexicalist framework. In this paper, we describe v1 of the universal guidelines, the underlying design principles, and the currently available treebanks for 33 languages.
We describe our ongoing effort to establish an annotation scheme for describing the semantic structures of research articles in the computer science domain, with the intended use of developing search systems that can refine their results by the roles of the entities denoted by the query keys. In our scheme, mentions of entities are annotated with ontology-based types, and the roles of the entities are annotated as relations with other entities described in the text. So far, we have annotated 400 abstracts from the ACL anthology and the ACM digital library. In this paper, the scheme and the annotated dataset are described, along with the problems found in the course of annotation. We also show the results of automatic annotation and evaluate the corpus in a practical setting in application to topic extraction.
Sequence labeling architectures use word embeddings for capturing similarity, but suffer when handling previously unseen or rare words. We investigate character-level extensions to such models and propose a novel architecture for combining alternative word representations. By using an attention mechanism, the model is able to dynamically decide how much information to use from a word- or character-level component. We evaluated different architectures on a range of sequence labeling datasets, and character-level extensions were found to improve performance on every benchmark. In addition, the proposed attention-based architecture delivered the best results even with a smaller number of trainable parameters.