Sai Ashish Somayajula


2024

pdf
Generalizable and Stable Finetuning of Pretrained Language Models on Low-Resource Texts
Sai Ashish Somayajula | Youwei Liang | Li Zhang | Abhishek Singh | Pengtao Xie
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Pretrained Language Models (PLMs) have advanced Natural Language Processing (NLP) tasks significantly, but finetuning PLMs on low-resource datasets poses significant challenges such as instability and overfitting. Previous methods tackle these issues by finetuning a strategically chosen subnetwork on a downstream task, while keeping the remaining weights fixed to the pretrained weights. However, they rely on a suboptimal criteria for sub-network selection, leading to suboptimal solutions. To address these limitations, we propose a regularization method based on attention-guided weight mixup for finetuning PLMs. Our approach represents each network weight as a mixup of task-specific weight and pretrained weight, controlled by a learnable attention parameter, providing finer control over sub-network selection. Furthermore, we employ a bi-level optimization (BLO) based framework on two separate splits of the training dataset, improving generalization and combating overfitting. We validate the efficacy of our proposed method through extensive experiments, demonstrating its superiority over previous methods, particularly in the context of finetuning PLMs on low-resource datasets. Our code is available at https://github.com/Sai-Ashish/Attention_guided_weight_mixup_BLO.

pdf
AutoLoRA: Automatically Tuning Matrix Ranks in Low-Rank Adaptation Based on Meta Learning
Ruiyi Zhang | Rushi Qiang | Sai Ashish Somayajula | Pengtao Xie
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large-scale pretraining followed by task-specific finetuning has achieved great success in various NLP tasks. Since finetuning all parameters of large pretrained models poses substantial computational and memory challenges, several efficient finetuning methods have been developed. Among them, low-rank adaptation (LoRA), which finetunes low-rank incremental update matrices on top of frozen pretrained weights, has proven particularly effective. Nonetheless, LoRA’s uniform rank assignment across all layers, along with its reliance on an exhaustive search to find the best rank, leads to high computation costs and suboptimal finetuning performance. To address these limitations, we introduce AutoLoRA, a meta learning based framework for automatically identifying the optimal rank of each LoRA layer. AutoLoRA associates each rank-1 matrix in a low-rank update matrix with a selection variable, which determines whether the rank-1 matrix should be discarded. A meta learning based method is developed to learn these selection variables. The optimal rank is determined by thresholding the values of these variables. Our comprehensive experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA. The code is publicly available at https://github.com/ruz048/AutoLoRA

2023

pdf
Bi-level Finetuning with Task-dependent Similarity Structure for Low-resource Training
Sai Ashish Somayajula | Lifeng Jin | Linfeng Song | Haitao Mi | Dong Yu
Findings of the Association for Computational Linguistics: ACL 2023

Training a large language model in low-resource settings is challenging since they are susceptible to overfitting with limited generalization abilities. Previous work addresses this issue by approaches such as tunable parameters reduction or data augmentation. However, they either limit the trained models’ expressiveness or rely on task-independent knowledge. In this paper, we propose the Bi-level Finetuning with Task-dependent Similarity Structure framework where all parameters, including the embeddings for unseen tokens, are finetuned with task-dependent information from the training data only. In this framework, a task-dependent similarity structure is learned in a data-driven fashion, which in turn is used to compose soft embeddings from conventional embeddings to be used in training to update all parameters. In order to learn the similarity structure and model parameters, we propose a bi-level optimization algorithm with two stages—search and finetune—to ensure successful learning. Results of experiments on several classification datasets in low-resource scenarios demonstrate that models trained with our method outperform strong baselines. Ablation experiments further support the effectiveness of different components in our framework. Code is available at https://github.com/Sai-Ashish/BFTSS.

2022

pdf
A Multi-Level Optimization Framework for End-to-End Text Augmentation
Sai Ashish Somayajula | Linfeng Song | Pengtao Xie
Transactions of the Association for Computational Linguistics, Volume 10

Text augmentation is an effective technique in alleviating overfitting in NLP tasks. In existing methods, text augmentation and downstream tasks are mostly performed separately. As a result, the augmented texts may not be optimal to train the downstream model. To address this problem, we propose a three-level optimization framework to perform text augmentation and the downstream task end-to- end. The augmentation model is trained in a way tailored to the downstream task. Our framework consists of three learning stages. A text summarization model is trained to perform data augmentation at the first stage. Each summarization example is associated with a weight to account for its domain difference with the text classification data. At the second stage, we use the model trained at the first stage to perform text augmentation and train a text classification model on the augmented texts. At the third stage, we evaluate the text classification model trained at the second stage and update weights of summarization examples by minimizing the validation loss. These three stages are performed end-to-end. We evaluate our method on several text classification datasets where the results demonstrate the effectiveness of our method. Code is available at https://github.com/Sai-Ashish/End-to-End-Text-Augmentation.