2024
pdf
abs
Plum: Prompt Learning using Metaheuristics
Rui Pan
|
Shuo Xing
|
Shizhe Diao
|
Wenhe Sun
|
Xiang Liu
|
KaShun Shum
|
Jipeng Zhang
|
Renjie Pi
|
Tong Zhang
Findings of the Association for Computational Linguistics ACL 2024
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly “general”, i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization.
pdf
abs
GradSafe: Detecting Jailbreak Prompts for LLMs via Safety-Critical Gradient Analysis
Yueqi Xie
|
Minghong Fang
|
Renjie Pi
|
Neil Gong
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Models (LLMs) face threats from jailbreak prompts. Existing methods for detecting jailbreak prompts are primarily online moderation APIs or finetuned LLMs. These strategies, however, often require extensive and resource-intensive data collection and training processes. In this study, we propose GradSafe, which effectively detects jailbreak prompts by scrutinizing the gradients of safety-critical parameters in LLMs. Our method is grounded in a pivotal observation: the gradients of an LLM’s loss for jailbreak prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters. In contrast, safe prompts lead to different gradient patterns. Building on this observation, GradSafe analyzes the gradients from prompts (paired with compliance responses) to accurately detect jailbreak prompts. We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard—despite its extensive finetuning with a large dataset—in detecting jailbreak prompts. This superior performance is consistent across both zero-shot and adaptation scenarios, as evidenced by our evaluations on ToxicChat and XSTest. The source code is available at https://github.com/xyq7/GradSafe.
pdf
abs
SceMQA: A Scientific College Entrance Level Multimodal Question Answering Benchmark
Zhenwen Liang
|
Kehan Guo
|
Gang Liu
|
Taicheng Guo
|
Yujun Zhou
|
Tianyu Yang
|
Jiajun Jiao
|
Renjie Pi
|
Jipeng Zhang
|
Xiangliang Zhang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level. It addresses a critical educational phase often overlooked in existing benchmarks, spanning high school to pre-college levels. SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology. It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models’ abilities. Additionally, our benchmark provides specific knowledge points for each problem and detailed explanations for each answer. SceMQA also uniquely presents problems with identical contexts but varied questions to facilitate a more thorough and accurate assessment of reasoning capabilities. In the experiment, we evaluate both open-source and close-source state-of-the-art Multimodal Large Language Models (MLLMs), across various experimental settings. The results show that further research and development are needed in developing more capable MLLM, as highlighted by only 50% to 60% accuracy achieved by the strongest models.
2023
pdf
abs
DetGPT: Detect What You Need via Reasoning
Renjie Pi
|
Jiahui Gao
|
Shizhe Diao
|
Rui Pan
|
Hanze Dong
|
Jipeng Zhang
|
Lewei Yao
|
Jianhua Han
|
Hang Xu
|
Lingpeng Kong
|
Tong Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
In recent years, the field of computer vision has seen significant advancements thanks to the development of large language models (LLMs). These models have enabled more effective and sophisticated interactions between humans and machines, paving the way for novel techniques that blur the lines between human and machine intelligence. In this paper, we introduce a new paradigm for object detection that we call reasoning-based object detection. Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions, allowing for a higher level of interactivity. Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors to perform reasoning within the context of the user’s instructions and the visual scene. This enables DetGPT to automatically locate the object of interest based on the user’s expressed desires, even if the object is not explicitly mentioned. For instance, if a user expresses a desire for a cold beverage, DetGPT can analyze the image, identify a fridge, and use its knowledge of typical fridge contents to locate the beverage. This flexibility makes our system applicable across a wide range of fields, from robotics and automation to autonomous driving. Overall, our proposed paradigm and DetGPT demonstrate the potential for more sophisticated and intuitive interactions between humans and machines. We hope that our proposed paradigm and approach will provide inspiration to the community and open the door to more interactive and versatile object detection systems.