Pranjal Aggarwal


2024

pdf bib
CUNLP at SemEval-2024 Task 8: Classify Human and AI Generated Text
Pranjal Aggarwal | Deepanshu Sachdeva
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This task is a sub-part of SemEval-2024 competition which aims to classify AI vs Human Generated Text. In this paper we have experimented on an approach to automatically classify an artificially generated text and a human written text. With the advent of generative models like GPT-3.5 and GPT-4 it has become increasingly necessary to classify between the two texts due to various applications like detecting plagiarism and in tasks like fake news detection that can heavily impact real world problems, for instance stock manipulation through AI generated news articles. To achieve this, we start by using some basic models like Logistic Regression and move our way up to more complex models like transformers and GPTs for classification. This is a binary classification task where the label 1 represents AI generated text and 0 represents human generated text. The dataset was given in JSON style format which was converted to comma separated file (CSV) for better processing using the pandas library in Python as CSV files provides more readability than JSON format files. Approaches like Bagging Classifier and Voting classifier were also used.

2023

pdf
Let’s Sample Step by Step: Adaptive-Consistency for Efficient Reasoning and Coding with LLMs
Pranjal Aggarwal | Aman Madaan | Yiming Yang | Mausam
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A popular approach for improving the correctness of output from large language models (LLMs) is Self-Consistency - poll the LLM multiple times and output the most frequent solution. Existing Self-Consistency techniques always generate a constant number of samples per question, where a better approach will be to non-uniformly distribute the available budget based on the amount of agreement in the samples generated so far. In response, we introduce Adaptive-Consistency, a cost-efficient, model-agnostic technique that dynamically adjusts the number of samples per question using a lightweight stopping criterion. Our experiments over 17 reasoning and code generation datasets and three LLMs demonstrate that Adaptive-Consistency reduces sample budget by up to 7.9 times with an average accuracy drop of less than 0.1%