This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates, which is crucial for location-related services such as navigation maps. Unlike the general sentences, Chinese geographic contexts are closely intertwined with geographical concepts, from general spans (e.g., province) to specific spans (e.g., road). Given this feature, we propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines. Our methodology begins by employing off-the-shelf tools to associate text with geographical spans, treating them as chunking units. Then, we present a multi-task learning module to simultaneously acquire an effective attention matrix that determines chunk contributions to geographic representations. Furthermore, we put forth an asynchronous update mechanism for the proposed task, aiming to guide the model to focus on specific chunks. Experiments on two Chinese benchmark datasets, show that the Geo-Encoder achieves significant improvements when compared to state-of-the-art baselines. Notably, it leads to a substantial improvement in the Hit@1 score of MGEO-BERT, increasing it by 6.22% from 62.76 to 68.98 on the GeoTES dataset.
The cultural landscape of interactions with dialogue agents is a compelling yet relatively unexplored territory. It’s clear that various sociocultural aspects—from communication styles and beliefs to shared metaphors and knowledge—profoundly impact these interactions. To delve deeper into this dynamic, we introduce cuDialog, a first-of-its-kind benchmark for dialogue generation with a cultural lens. We also develop baseline models capable of extracting cultural attributes from dialogue exchanges, with the goal of enhancing the predictive accuracy and quality of dialogue agents. To effectively co-learn cultural understanding and multi-turn dialogue predictions, we propose to incorporate cultural dimensions with dialogue encoding features. Our experimental findings highlight that incorporating cultural value surveys boosts alignment with references and cultural markers, demonstrating its considerable influence on personalization and dialogue quality. To facilitate further exploration in this exciting domain, we publish our benchmark publicly accessible at https://github.com/yongcaoplus/cuDialog.
Blackfoot is challenging for English speaking instructors and learners to acquire because it exhibits unique pitch patterns. This study presents MeTILDA (Melodic Transcription in Language Documentation and Application) as a solution to teaching pitch patterns distinct from English. Specifically, we explore ways to improve data visualization through a visualized pronunciation teaching guide called Pitch Art. The working materials can be downloaded or stored in the cloud for further use and collaboration. These features are aimed to facilitate teachers in developing curriculum for learning pronunciation, and provide students with an interactive and integrative learning environment to better understand Blackfoot language and pronunciation.
Knowledge base question answering (KBQA) is a challenging task that aims to retrieve correct answers from large-scale knowledge bases. Existing attempts primarily focus on entity representation and final answer reasoning, which results in limited supervision for this task. Moreover, the relations, which empirically determine the reasoning path selection, are not fully considered in recent advancements. In this study, we propose a novel framework, RE-KBQA, that utilizes relations in the knowledge base to enhance entity representation and introduce additional supervision. We explore guidance from relations in three aspects, including (1) distinguishing similar entities by employing a variational graph auto-encoder to learn relation importance; (2) exploring extra supervision by predicting relation distributions as soft labels with a multi-task scheme; (3) designing a relation-guided re-ranking algorithm for post-processing. Experimental results on two benchmark datasets demonstrate the effectiveness and superiority of our framework, improving the F1 score by 5.8% from 40.5 to 46.3 on CWQ and 5.7% from 62.8 to 68.5 on WebQSP, better or on par with state-of-the-art methods.
The recent release of ChatGPT has garnered widespread recognition for its exceptional ability to generate human-like conversations. Given its usage by users from various nations and its training on a vast multilingual corpus that includes diverse cultural and societal norms, it is crucial to evaluate its effectiveness in cultural adaptation. In this paper, we investigate the underlying cultural background of ChatGPT by analyzing its responses to questions designed to quantify human cultural differences. Our findings suggest that, when prompted with American context, ChatGPT exhibits a strong alignment with American culture, but it adapts less effectively to other cultural contexts. Furthermore, by using different prompts to probe the model, we show that English prompts reduce the variance in model responses, flattening out cultural differences and biasing them towards American culture. This study provides valuable insights into the cultural implications of ChatGPT and highlights the necessity of greater diversity and cultural awareness in language technologies.
Sign language recognition and translation first uses a recognition module to generate glosses from sign language videos and then employs a translation module to translate glosses into spoken sentences. Most existing works focus on the recognition step, while paying less attention to sign language translation. In this work, we propose a task-aware instruction network, namely TIN-SLT, for sign language translation, by introducing the isntruction module and the learning-based feature fuse strategy into a Transformer network. In this way, the pre-trained model’s language ability can be well explored and utilized to further boost the translation performance. Moreover, by exploring the representation space of sign language glosses and target spoken language, we propose a multi-level data augmentation scheme to adjust the data distribution of the training set. We conduct extensive experiments on two challenging benchmark datasets, PHOENIX-2014-T and ASLG-PC12, on which our method outperforms former best solutions by 1.65 and 1.42 in terms of BLEU-4. Our code and trained networks will be available upon the publication of this work.