This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Understanding the internal mechanisms by which multi-modal large language models (LLMs) interpret different modalities and integrate cross-modal representations is becoming increasingly critical for continuous improvements in both academia and industry. In this paper, we propose a novel method to identify key neurons for interpretability — how multi-modal LLMs bridge visual and textual concepts for captioning. Our method improves conventional works upon efficiency and applied range by removing needs of costly gradient computation. Based on those identified neurons, we further design a multi-modal knowledge editing method, beneficial to mitigate sensitive words or hallucination. For rationale of our design, we provide theoretical assumption. For empirical evaluation, we have conducted extensive quantitative and qualitative experiments. The results not only validate the effectiveness of our methods, but also offer insightful findings that highlight three key properties of multi-modal neurons: sensitivity, specificity and causal-effect, to shed light for future research.
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs, which consist of structural triples and images associated with entities. Most previous works focus on how to utilize and encode information from different modalities, while it is not trivial to leverage multi-modal knowledge in entity alignment because of the modality heterogeneity. In this paper, we propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model, to obtain effective joint representations for multi-modal entity alignment. Different from previous works, MCLEA considers task-oriented modality and models the inter-modal relationships for each entity representation. In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions. Extensive experimental results show that MCLEA outperforms state-of-the-art baselines on public datasets under both supervised and unsupervised settings.
Automatic acquisition of novel compounds is notoriously difficult because most novel compounds have relatively low frequency in a corpus. The current study proposes a new method to deal with the novel compound acquisition challenge. We model this task as a two-class classification problem in which a candidate compound is either classified as a compound or a non-compound. A machine learning method using SVM, incorporating two types of linguistically motivated features: semantic features and character features, is applied to identify rare but valid noun compounds. We explore two kinds of training data: one is virtual training data which is obtained by three statistical scores, i.e. co-occurrence frequency, mutual information and dependent ratio, from the frequent compounds; the other is real training data which is randomly selected from the infrequent compounds. We conduct comparative experiments, and the experimental results show that even with limited direct evidence in the corpus for the novel compounds, we can make full use of the typical frequent compounds to help in the discovery of the novel compounds.