Martins Kronis


2024

pdf
Code-Mixed Text Augmentation for Latvian ASR
Martins Kronis | Askars Salimbajevs | Mārcis Pinnis
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Code-mixing has become mainstream in the modern, globalised world and affects low-resource languages, such as Latvian, in particular. Solutions to developing an automatic speech recognition system (ASR) for code-mixed speech often rely on specially created audio-text corpora, which are expensive and time-consuming to create. In this work, we attempt to tackle code-mixed Latvian-English speech recognition by improving the language model (LM) of a hybrid ASR system. We make a distinction between inflected transliterations and phonetic transcriptions as two different foreign word types. We propose an inflected transliteration model and a phonetic transcription model for the automatic generation of said word types. We then leverage a large human-translated English-Latvian parallel text corpus to generate synthetic code-mixed Latvian sentences by substituting in generated foreign words. Using the newly created augmented corpora, we train a new LM and combine it with our existing Latvian acoustic model (AM). For evaluation, we create a specialised foreign word test set on which our methods yield up to 15% relative CER improvement. We then further validate these results in a human evaluation campaign.