Liyan Wang


2024

pdf
Continued Pre-training on Sentence Analogies for Translation with Small Data
Liyan Wang | Haotong Wang | Yves Lepage
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This paper introduces Continued Pre-training on Analogies (CPoA) to incorporate pre-trained language models with analogical abilities, aiming at improving performance in low-resource translations without data augmentation. We continue training the models on sentence analogies retrieved from a translation corpus. Considering the sparsity of analogy in corpora, especially in low-resource scenarios, we propose exploring approximate analogies between sentences. We attempt to find sentence analogies that might not conform to formal criteria for entire sentences but partial pieces. When training the models, we introduce a weighting scalar pertaining to the quality of analogies to adjust the influence: emphasizing closer analogies while diminishing the impact of far ones. We evaluate our approach on a low-resource translation task: German-Upper Sorbian. The results show that CPoA using 10 times fewer instances can effectively attain gains of +1.4 and +1.3 BLEU points over the original model in two translation directions. This improvement is more pronounced when there are fewer parallel examples.

2020

pdf
Réseaux de neurones pour la résolution d’analogies entre phrases en traduction automatique par l’exemple (Neural networks for the resolution of analogies between sentences in EBMT )
Valentin Taillandier | Liyan Wang | Yves Lepage
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Cet article propose un modèle de réseau de neurones pour la résolution d’équations analogiques au niveau sémantique et entre phrases dans le cadre de la traduction automatique par l’exemple. Son originalité réside dans le fait qu’il fusionne les deux approches, directe et indirecte, de la traduction par l’exemple.