This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
In this paper, we present the outcome of a structural linguistic analysis performed on a referentially grounded FrameNet dataset. In this dataset, multiple Dutch events are referenced by multiple co-referential Dutch news texts. Mentions in those documents are annotated with respect to their referential grounding (i.e., links to structured Wikidata), and their conceptual representation (i.e., frames). Provided with each document’s temporal reporting distance, we selected documents for two events - the Utrecht shooting and MH17 - and performed an analysis in which we tracked the events’ participants over time in both their focalization (number of mentions) and their framing (distribution of frame element labels). This way, we use the carefully collected and annotated data to schematize shifts in focalization and perspectivization of the participants as a result of the constantly developing narrative surrounding the events. This novel type of linguistic research involves reference to the real-world referents and takes into account storytelling in news streams.
This article presents the first output of the Dutch FrameNet annotation tool, which facilitates both referential- and frame annotations of language-independent corpora. On the referential level, the tool links in-text mentions to structured data, grounding the text in the real world. On the frame level, those same mentions are annotated with respect to their semantic sense. This way of annotating not only generates a rich linguistic dataset that is grounded in real-world event instances, but also guides the annotators in frame identification, resulting in high inter-annotator-agreement and consistent annotations across documents and at discourse level, exceeding traditional sentence level annotations of frame elements. Moreover, the annotation tool features a dynamic lexical lookup that increases the development of a cross-domain FrameNet lexicon.
In this paper, we measure variation in framing as a function of foregrounding and backgrounding in a co-referential corpus with a range of temporal distance. In one type of experiment, frame-annotated corpora grouped under event types were contrasted, resulting in a ranking of frames with typicality rates. In contrasting between publication dates, a different ranking of frames emerged for documents that are close to or far from the event instance. In the second type of analysis, we trained a diagnostic classifier with frame occurrences in order to let it differentiate documents based on their temporal distance class (close to or far from the event instance). The classifier performs above chance and outperforms models with words.
In this paper, we introduce the task of using FrameNet to link structured information about real-world events to the conceptual frames used in texts describing these events. We show that frames made relevant by the knowledge of the real-world event can be captured by complementing standard lexicon-driven FrameNet annotations with frame annotations derived through pragmatic inference. We propose a two-layered annotation scheme with a ‘strict’ FrameNet-compatible lexical layer and a ‘loose’ layer capturing frames that are inferred from referential data.
We introduce an annotation tool whose purpose is to gain insights into variation of framing by combining FrameNet annotation with referential annotation. English FrameNet enables researchers to study variation in framing at the conceptual level as well through its packaging in language. We enrich FrameNet annotations in two ways. First, we introduce the referential aspect. Secondly, we annotate on complete texts to encode connections between mentions. As a result, we can analyze the variation of framing for one particular event across multiple mentions and (cross-lingual) documents. We can examine how an event is framed over time and how core frame elements are expressed throughout a complete text. The data model starts with a representation of an event type. Each event type has many incidents linked to it, and each incident has several reference texts describing it as well as structured data about the incident. The user can apply two types of annotations: 1) mappings from expressions to frames and frame elements, 2) reference relations from mentions to events and participants of the structured data.
In this article, we lay out the basic ideas and principles of the project Framing Situations in the Dutch Language. We provide our first results of data acquisition, together with the first data release. We introduce the notion of cross-lingual referential corpora. These corpora consist of texts that make reference to exactly the same incidents. The referential grounding allows us to analyze the framing of these incidents in different languages and across different texts. During the project, we will use the automatically generated data to study linguistic framing as a phenomenon, build framing resources such as lexicons and corpora. We expect to capture larger variation in framing compared to traditional approaches for building such resources. Our first data release, which contains structured data about a large number of incidents and reference texts, can be found at http://dutchframenet.nl/data-releases/.