This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Mobile app user interfaces (UIs) are rich with action, text, structure, and image content that can be utilized to learn generic UI representations for tasks like automating user commands, summarizing content, and evaluating the accessibility of user interfaces. Prior work has learned strong visual representations with local or global captioning losses, but fails to retain both granularities.To combat this, we propose Textual Foresight, a novel pretraining objective for learning UI screen representations. Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken. Our approach requires joint reasoning over elements and entire screens, resulting in improved UI features: on generation tasks, UI agents trained with Textual Foresight outperform state-of-the-art by 2% with 28x fewer images. We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning. OpenApp enables new baselines, and we find Textual Foresight improves average task performance over them by 5.7% while having access to 2x less data.
Webpages have been a rich, scalable resource for vision-language and language only tasks. Yet only pieces of webpages are kept in existing datasets: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data left underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage suite (WikiWeb2M) containing 2M pages with all of the associated image, text, and structure data. We verify its utility on three generative tasks: page description generation, section summarization, and contextual image captioning. We design a novel attention mechanism Prefix Global, which selects the most relevant image and text content as global tokens to attend to the rest of the webpage for context. By using page structure to separate such tokens, it performs better than full attention with lower computational complexity. Extensive experiments show that the new data in WikiWeb2M improves task performance compared to prior work.
Large-scale dissemination of disinformation online intended to mislead or deceive the general population is a major societal problem. Rapid progression in image, video, and natural language generative models has only exacerbated this situation and intensified our need for an effective defense mechanism. While existing approaches have been proposed to defend against neural fake news, they are generally constrained to the very limited setting where articles only have text and metadata such as the title and authors. In this paper, we introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions. To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset which is comprised of 4 different types of generated articles as well as conduct a series of human user study experiments based on this dataset. Coupled with providing a relatively effective approach based on detecting visual-semantic inconsistencies, the valuable insights gleaned from our user study experiments and, consequently, this paper will serve as an effective first line of defense and a valuable reference for future work in defending against machine-generated disinformation.
Vision-and-Language Navigation (VLN) requires grounding instructions, such as “turn right and stop at the door”, to routes in a visual environment. The actual grounding can connect language to the environment through multiple modalities, e.g. “stop at the door” might ground into visual objects, while “turn right” might rely only on the geometric structure of a route. We investigate where the natural language empirically grounds under two recent state-of-the-art VLN models. Surprisingly, we discover that visual features may actually hurt these models: models which only use route structure, ablating visual features, outperform their visual counterparts in unseen new environments on the benchmark Room-to-Room dataset. To better use all the available modalities, we propose to decompose the grounding procedure into a set of expert models with access to different modalities (including object detections) and ensemble them at prediction time, improving the performance of state-of-the-art models on the VLN task.
Despite continuously improving performance, contemporary image captioning models are prone to “hallucinating” objects that are not actually in a scene. One problem is that standard metrics only measure similarity to ground truth captions and may not fully capture image relevance. In this work, we propose a new image relevance metric to evaluate current models with veridical visual labels and assess their rate of object hallucination. We analyze how captioning model architectures and learning objectives contribute to object hallucination, explore when hallucination is likely due to image misclassification or language priors, and assess how well current sentence metrics capture object hallucination. We investigate these questions on the standard image captioning benchmark, MSCOCO, using a diverse set of models. Our analysis yields several interesting findings, including that models which score best on standard sentence metrics do not always have lower hallucination and that models which hallucinate more tend to make errors driven by language priors.