Kaitao Song


2024

pdf
Improving Large Language Models in Event Relation Logical Prediction
Meiqi Chen | Yubo Ma | Kaitao Song | Yixin Cao | Yan Zhang | Dongsheng Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Event relations are crucial for narrative understanding and reasoning. Governed by nuanced logic, event relation extraction (ERE) is a challenging task that demands thorough semantic understanding and rigorous logical reasoning. In this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in understanding and applying event relation logic. More in detail, we first investigate the deficiencies of LLMs in logical reasoning across different tasks. Our study reveals that LLMs are not logically consistent reasoners, which results in their suboptimal performance on tasks that need rigorous reasoning. To address this, we explore three different approaches to endow LLMs with event relation logic, and thus enable them to generate more coherent answers across various scenarios. Based on our approach, we also contribute a synthesized dataset (LLM-ERL) involving high-order reasoning for evaluation and fine-tuning. Extensive quantitative and qualitative analyses on different tasks also validate the effectiveness of our approach and provide insights for solving practical tasks with LLMs in future work. Codes are available at https://github.com/chenmeiqii/Teach-LLM-LR.

2023

pdf
MusicAgent: An AI Agent for Music Understanding and Generation with Large Language Models
Dingyao Yu | Kaitao Song | Peiling Lu | Tianyu He | Xu Tan | Wei Ye | Shikun Zhang | Jiang Bian
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

AI-empowered music processing is a diverse feld that encompasses dozens of tasks, ranging from generation tasks (e.g., timbre synthesis) to comprehension tasks (e.g., music classifcation). For developers and amateurs, it is very diffcult to grasp all of these task to satisfy their requirements in music processing, especially considering the huge differences in the representations of music data and the model applicability across platforms among various tasks. Consequently, it is necessary to build a system to organize and integrate these tasks, and thus help practitioners to automatically analyze their demand and call suitable tools as solutions to fulfill their requirements. Inspired by the recent success of large language models (LLMs) in task automation, we develop a system, named MusicAgent, which integrates numerous music-related tools and an autonomous workflow to address user requirements. More specifically, we build 1) toolset that collects tools from diverse sources, including Hugging Face, GitHub, and Web API, etc. 2) an autonomous workflow empowered by LLMs (e.g., ChatGPT) to organize these tools and automatically decompose user requests into multiple sub-tasks and invoke corresponding music tools. The primary goal of this system is to free users from the intricacies of AI-music tools, enabling them to concentrate on the creative aspect. By granting users the freedom to effortlessly combine tools, the system offers a seamless and enriching music experience. The code is available on GitHub along with a brief instructional video.

pdf
DiffusionNER: Boundary Diffusion for Named Entity Recognition
Yongliang Shen | Kaitao Song | Xu Tan | Dongsheng Li | Weiming Lu | Yueting Zhuang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we propose DiffusionNER, which formulates the named entity recognition task as a boundary-denoising diffusion process and thus generates named entities from noisy spans. During training, DiffusionNER gradually adds noises to the golden entity boundaries by a fixed forward diffusion process and learns a reverse diffusion process to recover the entity boundaries. In inference, DiffusionNER first randomly samples some noisy spans from a standard Gaussian distribution and then generates the named entities by denoising them with the learned reverse diffusion process. The proposed boundary-denoising diffusion process allows progressive refinement and dynamic sampling of entities, empowering DiffusionNER with efficient and flexible entity generation capability. Experiments on multiple flat and nested NER datasets demonstrate that DiffusionNER achieves comparable or even better performance than previous state-of-the-art models.

pdf
Towards Understanding Omission in Dialogue Summarization
Yicheng Zou | Kaitao Song | Xu Tan | Zhongkai Fu | Qi Zhang | Dongsheng Li | Tao Gui
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialogue summarization aims to condense the lengthy dialogue into a concise summary, and has recently achieved significant progress. However, the result of existing methods is still far from satisfactory. Previous works indicated that omission is a major factor in affecting the quality of summarization, but few of them have further explored the omission problem, such as how omission affects summarization results and how to detect omission, which is critical for reducing omission and improving summarization quality. Moreover, analyzing and detecting omission relies on summarization datasets with omission labels (i.e., which dialogue utterances are omitted in the summarization), which are not available in the current literature. In this paper, we propose the OLDS dataset, which provides high-quality omission labels for dialogue summarization. By analyzing this dataset, we find that a large improvement in summarization quality can be achieved by providing ground-truth omission labels for the summarization model to recover omission information, which demonstrates the importance of omission detection for omission mitigation in dialogue summarization. Therefore, we formulate an omission detection task and demonstrate our proposed dataset can support the training and evaluation of this task well. We also call for research action on omission detection based on our proposed datasets. Our dataset and codes are publicly available.

2021

pdf
DeepRapper: Neural Rap Generation with Rhyme and Rhythm Modeling
Lanqing Xue | Kaitao Song | Duocai Wu | Xu Tan | Nevin L. Zhang | Tao Qin | Wei-Qiang Zhang | Tie-Yan Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Rap generation, which aims to produce lyrics and corresponding singing beats, needs to model both rhymes and rhythms. Previous works for rap generation focused on rhyming lyrics, but ignored rhythmic beats, which are important for rap performance. In this paper, we develop DeepRapper, a Transformer-based rap generation system that can model both rhymes and rhythms. Since there is no available rap datasets with rhythmic beats, we develop a data mining pipeline to collect a large-scale rap dataset, which includes a large number of rap songs with aligned lyrics and rhythmic beats. Second, we design a Transformer-based autoregressive language model which carefully models rhymes and rhythms. Specifically, we generate lyrics in the reverse order with rhyme representation and constraint for rhyme enhancement, and insert a beat symbol into lyrics for rhythm/beat modeling. To our knowledge, DeepRapper is the first system to generate rap with both rhymes and rhythms. Both objective and subjective evaluations demonstrate that DeepRapper generates creative and high-quality raps with rhymes and rhythms.

2018

pdf
Double Path Networks for Sequence to Sequence Learning
Kaitao Song | Xu Tan | Di He | Jianfeng Lu | Tao Qin | Tie-Yan Liu
Proceedings of the 27th International Conference on Computational Linguistics

Encoder-decoder based Sequence to Sequence learning (S2S) has made remarkable progress in recent years. Different network architectures have been used in the encoder/decoder. Among them, Convolutional Neural Networks (CNN) and Self Attention Networks (SAN) are the prominent ones. The two architectures achieve similar performances but use very different ways to encode and decode context: CNN use convolutional layers to focus on the local connectivity of the sequence, while SAN uses self-attention layers to focus on global semantics. In this work we propose Double Path Networks for Sequence to Sequence learning (DPN-S2S), which leverage the advantages of both models by using double path information fusion. During the encoding step, we develop a double path architecture to maintain the information coming from different paths with convolutional layers and self-attention layers separately. To effectively use the encoded context, we develop a gated attention fusion module and use it to automatically pick up the information needed during the decoding step, which is also a double path network. By deeply integrating the two paths, both types of information are combined and well exploited. Experiments show that our proposed method can significantly improve the performance of sequence to sequence learning over state-of-the-art systems.