Kai-Wei Chang

Also published as: Kai-wei Chang


2024

pdf
Mitigating Bias for Question Answering Models by Tracking Bias Influence
Mingyu Ma | Jiun-Yu Kao | Arpit Gupta | Yu-Hsiang Lin | Wenbo Zhao | Tagyoung Chung | Wei Wang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.

pdf
CASA: Causality-driven Argument Sufficiency Assessment
Xiao Liu | Yansong Feng | Kai-Wei Chang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

The argument sufficiency assessment task aims to determine if the premises of a given argument support its conclusion.To tackle this task, existing works often train a classifier on data annotated by humans. However, annotating data is laborious, and annotations are often inconsistent due to subjective criteria. Motivated by the definition of probability of sufficiency (PS) in the causal literature, we proposeCASA, a zero-shot causality-driven argument sufficiency assessment framework. PS measures how likely introducing the premise event would lead to the conclusion when both the premise and conclusion events are absent. To estimate this probability, we propose to use large language models (LLMs) to generate contexts that are inconsistent with the premise and conclusion and revise them by injecting the premise event.Experiments on two logical fallacy detection datasets demonstrate that CASA accurately identifies insufficient arguments. We further deploy CASA in a writing assistance application, and find that suggestions generated by CASA enhance the sufficiency of student-written arguments. Code and data are available at https://github.com/xxxiaol/CASA.

pdf
Contextual Label Projection for Cross-Lingual Structured Prediction
Tanmay Parekh | I-Hung Hsu | Kuan-Hao Huang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Label projection, which involves obtaining translated labels and texts jointly, is essential for leveraging machine translation to facilitate cross-lingual transfer in structured prediction tasks. Prior research exploring label projection often compromise translation accuracy by favoring simplified label translation or relying solely on word-level alignments. In this paper, we introduce a novel label projection approach, CLaP, which translates text to the target language and performs *contextual translation* on the labels using the translated text as the context, ensuring better accuracy for the translated labels. We leverage instruction-tuned language models with multilingual capabilities as our contextual translator, imposing the constraint of the presence of translated labels in the translated text via instructions. We benchmark CLaP with other label projection techniques on zero-shot cross-lingual transfer across 39 languages on two representative structured prediction tasks - event argument extraction (EAE) and named entity recognition (NER), showing over 2.4 F1 improvement for EAE and 1.4 F1 improvement for NER. We further explore the applicability of CLaP on ten extremely low-resource languages to showcase its potential for cross-lingual structured prediction.

pdf
Event Detection from Social Media for Epidemic Prediction
Tanmay Parekh | Anh Mac | Jiarui Yu | Yuxuan Dong | Syed Shahriar | Bonnie Liu | Eric Yang | Kuan-Hao Huang | Wei Wang | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Social media is an easy-to-access platform providing timely updates about societal trends and events. Discussions regarding epidemic-related events such as infections, symptoms, and social interactions can be crucial for informing policymaking during epidemic outbreaks. In our work, we pioneer exploiting Event Detection (ED) for better preparedness and early warnings of any upcoming epidemic by developing a framework to extract and analyze epidemic-related events from social media posts. To this end, we curate an epidemic event ontology comprising seven disease-agnostic event types and construct a Twitter dataset SPEED with human-annotated events focused on the COVID-19 pandemic. Experimentation reveals how ED models trained on COVID-based SPEED can effectively detect epidemic events for three unseen epidemics of Monkeypox, Zika, and Dengue; while models trained on existing ED datasets fail miserably. Furthermore, we show that reporting sharp increases in the extracted events by our framework can provide warnings 4-9 weeks earlier than the WHO epidemic declaration for Monkeypox. This utility of our framework lays the foundations for better preparedness against emerging epidemics.

pdf
The steerability of large language models toward data-driven personas
Junyi Li | Charith Peris | Ninareh Mehrabi | Palash Goyal | Kai-Wei Chang | Aram Galstyan | Richard Zemel | Rahul Gupta
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented. Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs, that can be leveraged to produce multiple perspectives and to reflect the diverse opinions. Moving beyond the traditional reliance on demographics like age, gender, or party affiliation, we introduce a data-driven notion of persona grounded in collaborative filtering, which is defined as either a single individual or a cohort of individuals manifesting similar views across specific inquiries. As individuals in the same demographic group may have different personas, our data-driven persona definition allows for a more nuanced understanding of different (latent) social groups present in the population. In addition to this, we also explore an efficient method to steer LLMs toward the personas that we define. We show that our data-driven personas significantly enhance model steerability, with improvements of between 57%-77% over our best performing baselines.

pdf bib
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)
Kai-Wei Chang | Annie Lee | Nazneen Rajani
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: System Demonstrations)

pdf
Understanding and Mitigating Spurious Correlations in Text Classification with Neighborhood Analysis
Oscar Chew | Hsuan-Tien Lin | Kai-Wei Chang | Kuan-Hao Huang
Findings of the Association for Computational Linguistics: EACL 2024

Recent research has revealed that machine learning models have a tendency to leverage spurious correlations that exist in the training set but may not hold true in general circumstances. For instance, a sentiment classifier may erroneously learn that the token “performances” is commonly associated with positive movie reviews.Relying on these spurious correlations degrades the classifier’s performance when it deploys on out-of-distribution data.In this paper, we examine the implications of spurious correlations through a novel perspective called neighborhood analysis. The analysis uncovers how spurious correlations lead unrelated words to erroneously cluster together in the embedding space. Driven by the analysis, we design a metric to detect spurious tokens and also propose a family of regularization methods, NFL (doN’t Forget your Language) to mitigate spurious correlations in text classification.Experiments show that NFL can effectively prevent erroneous clusters and significantly improve the robustness of classifiers without auxiliary data. The code is publicly available at https://github.com/oscarchew/doNt-Forget-your-Language.

pdf
Tokenization Matters: Navigating Data-Scarce Tokenization for Gender Inclusive Language Technologies
Anaelia Ovalle | Ninareh Mehrabi | Palash Goyal | Jwala Dhamala | Kai-Wei Chang | Richard Zemel | Aram Galstyan | Yuval Pinter | Rahul Gupta
Findings of the Association for Computational Linguistics: NAACL 2024

Gender-inclusive NLP research has documented the harmful limitations of gender binary-centric large language models (LLM), such as the inability to correctly use gender-diverse English neopronouns (e.g., xe, zir, fae). While data scarcity is a known culprit, the precise mechanisms through which scarcity affects this behavior remain underexplored. We discover LLM misgendering is significantly influenced by Byte-Pair Encoding (BPE) tokenization, the tokenizer powering many popular LLMs. Unlike binary pronouns, BPE overfragments neopronouns, a direct consequence of data scarcity during tokenizer training. This disparate tokenization mirrors tokenizer limitations observed in multilingual and low-resource NLP, unlocking new misgendering mitigation strategies. We propose two techniques: (1) pronoun tokenization parity, a method to enforce consistent tokenization across gendered pronouns, and (2) utilizing pre-existing LLM pronoun knowledge to improve neopronoun proficiency. Our proposed methods outperform finetuning with standard BPE, improving neopronoun accuracy from 14.1% to 58.4%. Our paper is the first to link LLM misgendering to tokenization and deficient neopronoun grammar, indicating that LLMs unable to correctly treat neopronouns as pronouns are more prone to misgender.

pdf
KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation
Di Wu | Da Yin | Kai-Wei Chang
Findings of the Association for Computational Linguistics ACL 2024

Despite the significant advancements in keyphrase extraction and keyphrase generation methods, the predominant approach for evaluation mainly relies on exact matching with human references. This scheme fails to recognize systems that generate keyphrases semantically equivalent to the references or diverse keyphrases that carry practical utility. To better assess the capability of keyphrase systems, we propose KPEval, a comprehensive evaluation framework consisting of four critical aspects: reference agreement, faithfulness, diversity, and utility. For each aspect, we design semantic-based metrics to reflect the evaluation objectives. Meta-evaluation studies demonstrate that our evaluation strategy correlates better with human preferences compared to a range of previously proposed metrics. Using KPEval, we re-evaluate 23 keyphrase systems and discover that (1) established model comparison results have blind-spots especially when considering reference-free evaluation; (2) large language models are underestimated by prior evaluation works; and (3) there is no single best model that can excel in all the aspects.

pdf
Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data
Xiao Liu | Zirui Wu | Xueqing Wu | Pan Lu | Kai-Wei Chang | Yansong Feng
Findings of the Association for Computational Linguistics ACL 2024

Quantitative reasoning is a critical skill to analyze data, yet the assessment of such ability remains limited. To address this gap, we introduce the Quantitative Reasoning with Data (QRData) benchmark, aiming to evaluate Large Language Models’ capability in statistical and causal reasoning with real-world data. The benchmark comprises a carefully constructed dataset of 411 questions accompanied by data sheets from textbooks, online learning materials, and academic papers. To compare models’ quantitative reasoning abilities on data and text, we enrich the benchmark with an auxiliary set of 290 text-only questions, namely QRText. We evaluate natural language reasoning, program-based reasoning, and agent reasoning methods including Chain-of-Thought, Program-of-Thoughts, ReAct, and code interpreter assistants on diverse models. The strongest model GPT-4 achieves an accuracy of 58%, which has much room for improvement. Among open-source models, Deepseek-coder-instruct, a code LLM pretrained on 2T tokens, gets the highest accuracy of 37%. Analysis reveals that models encounter difficulties in data analysis and causal reasoning, and struggle in using causal knowledge and provided data simultaneously. Code and data are in https://github.com/xxxiaol/QRData.

pdf
Codec-SUPERB: An In-Depth Analysis of Sound Codec Models
Haibin Wu | Ho-Lam Chung | Yi-Cheng Lin | Yuan-Kuei Wu | Xuanjun Chen | Yu-Chi Pai | Hsiu-Hsuan Wang | Kai-Wei Chang | Alexander Liu | Hung-yi Lee
Findings of the Association for Computational Linguistics ACL 2024

The sound codec’s dual roles in minimizing data transmission latency and serving as tokenizers underscore its critical importance.Recent years have witnessed significant developments in codec models.The ideal sound codec should preserve content, paralinguistics, speakers, and audio information.However, the question of which codec achieves optimal sound information preservation remains unanswered, as in different papers, models are evaluated on their selected experimental settings.This study introduces Codec-SUPERB, an acronym for Codec sound processing Universal PERformance Benchmark.It is an ecosystem designed to assess codec models across representative sound applications and signal-level metrics rooted in sound domain knowledge.Codec-SUPERB simplifies result sharing through an online leaderboard, promoting collaboration within a community-driven benchmark database, thereby stimulating new development cycles for codecs.Furthermore, we undertake an in-depth analysis to offer insights into codec models from both application and signal perspectives, diverging from previous codec papers mainly concentrating on signal-level comparisons.Finally, we will release codes, the leaderboard, and data to accelerate progress within the community.

pdf
TextEE: Benchmark, Reevaluation, Reflections, and Future Challenges in Event Extraction
Kuan-Hao Huang | I-Hung Hsu | Tanmay Parekh | Zhiyu Xie | Zixuan Zhang | Prem Natarajan | Kai-Wei Chang | Nanyun Peng | Heng Ji
Findings of the Association for Computational Linguistics ACL 2024

Event extraction has gained considerable interest due to its wide-ranging applications. However, recent studies draw attention to evaluation issues, suggesting that reported scores may not accurately reflect the true performance. In this work, we identify and address evaluation challenges, including inconsistency due to varying data assumptions or preprocessing steps, the insufficiency of current evaluation frameworks that may introduce dataset or data split bias, and the low reproducibility of some previous approaches. To address these challenges, we present TextEE, a standardized, fair, and reproducible benchmark for event extraction. TextEE comprises standardized data preprocessing scripts and splits for 16 datasets spanning eight diverse domains and includes 14 recent methodologies, conducting a comprehensive benchmark reevaluation. We also evaluate five varied large language models on our TextEE benchmark and demonstrate how they struggle to achieve satisfactory performance. Inspired by our reevaluation results and findings, we discuss the role of event extraction in the current NLP era, as well as future challenges and insights derived from TextEE. We believe TextEE, the first standardized comprehensive benchmarking tool, will significantly facilitate future event extraction research.

pdf
Can Small Language Models Help Large Language Models Reason Better?: LM-Guided Chain-of-Thought
Jooyoung Lee | Fan Yang | Thanh Tran | Qian Hu | Emre Barut | Kai-Wei Chang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

We introduce a novel framework, LM-Guided CoT, that leverages a lightweight (i.e., <1B) language model (LM) for guiding a black-box large (i.e., >10B) LM in reasoning tasks. Specifically, the lightweight LM first generates a rationale for each input instance. The Frozen large LM is then prompted to predict a task output based on the rationale generated by the lightweight LM. Our approach is resource-efficient in the sense that it only requires training the lightweight LM. We optimize the model through 1) knowledge distillation and 2) reinforcement learning from rationale-oriented and task-oriented reward signals. We assess our method with multi-hop extractive question answering (QA) benchmarks, HotpotQA, and 2WikiMultiHopQA. Experimental results show that our approach outperforms all baselines regarding answer prediction accuracy. We also find that reinforcement learning helps the model to produce higher-quality rationales with improved QA performance.

pdf
Medical Vision-Language Pre-Training for Brain Abnormalities
Masoud Monajatipoor | Zi-Yi Dou | Aichi Chien | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Vision-language models have become increasingly powerful for tasks that require an understanding of both visual and linguistic elements, bridging the gap between these modalities. In the context of multimodal clinical AI, there is a growing need for models that possess domain-specific knowledge, as existing models often lack the expertise required for medical applications. In this paper, we take brain abnormalities as an example to demonstrate how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed. In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset from case reports and published journals and subsequently constructing a high-performance vision-language model tailored to specific medical tasks. We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain. We evaluated the resulting model with quantitative and qualitative intrinsic evaluations. The resulting dataset will be released to the community.

pdf
On Leveraging Encoder-only Pre-trained Language Models for Effective Keyphrase Generation
Di Wu | Wasi Ahmad | Kai-Wei Chang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

This study addresses the application of encoder-only Pre-trained Language Models (PLMs) in keyphrase generation (KPG) amidst the broader availability of domain-tailored encoder-only models compared to encoder-decoder models. We investigate three core inquiries: (1) the efficacy of encoder-only PLMs in KPG, (2) optimal architectural decisions for employing encoder-only PLMs in KPG, and (3) a performance comparison between in-domain encoder-only and encoder-decoder PLMs across varied resource settings. Our findings, derived from extensive experimentation in two domains reveal that with encoder-only PLMs, although keyphrase extraction with Conditional Random Fields slightly excels in identifying present keyphrases, the KPG formulation renders a broader spectrum of keyphrase predictions. Additionally, prefix-LM fine-tuning of encoder-only PLMs emerges as a strong and data-efficient strategy for KPG, outperforming general-domain seq2seq PLMs. We also identify a favorable parameter allocation towards model depth rather than width when employing encoder-decoder architectures initialized with encoder-only PLMs. The study sheds light on the potential of utilizing encoder-only PLMs for advancing KPG systems and provides a groundwork for future KPG methods. Our code and pre-trained checkpoints are released at https://github.com/uclanlp/DeepKPG.

pdf
Red Teaming Language Model Detectors with Language Models
Zhouxing Shi | Yihan Wang | Fan Yin | Xiangning Chen | Kai-Wei Chang | Cho-Jui Hsieh
Transactions of the Association for Computational Linguistics, Volume 12

The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustness.

pdf
Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs
Elan Markowitz | Anil Ramakrishna | Jwala Dhamala | Ninareh Mehrabi | Charith Peris | Rahul Gupta | Kai-Wei Chang | Aram Galstyan
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge graphs (KGs) complement Large Language Models (LLMs) by providing reliable, structured, domain-specific, and up-to-date external knowledge. However, KGs and LLMs are often developed separately and must be integrated after training. We introduce Tree-of-Traversals, a novel zero-shot reasoning algorithm that enables augmentation of black-box LLMs with one or more KGs. The algorithm equips a LLM with actions for interfacing a KG and enables the LLM to perform tree search over possible thoughts and actions to find high confidence reasoning paths. Tree-of-Traversals significantly improves performance on question answering and KG question answering tasks. Code is available at https://github.com/amazon-science/tree-of-traversals

pdf
Agent Lumos: Unified and Modular Training for Open-Source Language Agents
Da Yin | Faeze Brahman | Abhilasha Ravichander | Khyathi Chandu | Kai-Wei Chang | Yejin Choi | Bill Yuchen Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Closed-source agents suffer from several issues such as a lack of affordability, transparency, and reproducibility, particularly on complex interactive tasks. This motivates the development of open-source alternatives. We introduce Lumos, one of the first frameworks for training open-source LLM-based agents. Lumos features a learnable, unified and modular architecture with a planning module that learns high-level subgoal generation, and a grounding module trained to translate these into the actions using various tools in the execution module. The design allows for modular upgrades and wider applicability to diverse interactive tasks. To foster generalizable agent learning, we collect large-scale, unified, and high-quality training annotations derived from diverse ground-truth reasoning rationales across various complex interactive tasks. On 9 datasets, Lumos exhibits several key advantages: (1) Lumos excels multiple larger open-source agents on the held-out datasets (unused for training) for each task type. Lumos even surpasses GPT agents on QA and web tasks; (2) Lumos outperforms open-source agents produced by chain-of-thoughts and unmodularized integrated training; and (3) Lumos effectively generalizes to unseen tasks, outperforming 33B-scale agents and domain-specific agents. Code and data will be released.

pdf bib
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)
Anaelia Ovalle | Kai-Wei Chang | Yang Trista Cao | Ninareh Mehrabi | Jieyu Zhao | Aram Galstyan | Jwala Dhamala | Anoop Kumar | Rahul Gupta
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)

pdf
BELIEVE: Belief-Enhanced Instruction Generation and Augmentation for Zero-Shot Bias Mitigation
Lisa Bauer | Ninareh Mehrabi | Palash Goyal | Kai-Wei Chang | Aram Galstyan | Rahul Gupta
Proceedings of the 4th Workshop on Trustworthy Natural Language Processing (TrustNLP 2024)

Language models, pre-trained on large amounts of unmoderated content, have been shown to contain societal biases. Mitigating such biases typically requires access to model parameters and training schemas. In this work, we address bias mitigation at inference time, such that it can be applied to any black-box model. To this end, we propose a belief generation and augmentation framework, BELIEVE, that demonstrates effective bias mitigation for natural language generation by augmenting input prompts with automatically generated instruction-based beliefs. Our framework eases the bottleneck required for manually crafting these instruction-based beliefs, by extending a recently proposed iterative in-context learning framework to automatically generate beliefs via a language model. We assess the impact of this system on fairness, and demonstrate effective bias mitigation on pretrained and instruction-tuned models for both sentiment and regard with respect to multiple protected classes including race, gender, and political ideology.

2023

pdf
UniFine: A Unified and Fine-grained Approach for Zero-shot Vision-Language Understanding
Rui Sun | Zhecan Wang | Haoxuan You | Noel Codella | Kai-Wei Chang | Shih-Fu Chang
Findings of the Association for Computational Linguistics: ACL 2023

Vision-language tasks, such as VQA, SNLI-VE, and VCR are challenging because they require the model’s reasoning ability to understand the semantics of the visual world and natural language. Supervised methods working for vision-language tasks have been well-studied. However, solving these tasks in a zero-shot setting is less explored. Since Contrastive Language-Image Pre-training (CLIP) has shown remarkable zero-shot performance on image-text matching, previous works utilized its strong zero-shot ability by converting vision-language tasks into an image-text matching problem, and they mainly consider global-level matching (e.g., the whole image or sentence). However, we find visual and textual fine-grained information, e.g., keywords in the sentence and objects in the image, can be fairly informative for semantics understanding. Inspired by this, we propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning, covering multiple tasks such as VQA, SNLI-VE, and VCR. Our experiments show that our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR. Furthermore, our ablation studies confirm the effectiveness and generalizability of our proposed method.

pdf
AVATAR: A Parallel Corpus for Java-Python Program Translation
Wasi Uddin Ahmad | Md Golam Rahman Tushar | Saikat Chakraborty | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2023

Program translation refers to migrating source code from one programming language to another. It has tremendous practical value in software development, as porting software across languages is time-consuming and costly. Automating program translation is of paramount importance in software migration, and recently researchers explored unsupervised approaches due to the unavailability of parallel corpora. However, the availability of pre-trained language models for programming languages enables supervised fine-tuning with a small number of labeled examples. Therefore, we present AVATAR, a collection of 9,515 programming problems and their solutions written in two popular languages, Java and Python. AVATAR is collected from competitive programming sites, online platforms, and open-source repositories. Furthermore, AVATAR includes unit tests for 250 examples to facilitate functional correctness evaluation. We benchmark several pre-trained language models fine-tuned on AVATAR. Experiment results show that the models lack in generating functionally accurate code.

pdf
PIP: Parse-Instructed Prefix for Syntactically Controlled Paraphrase Generation
Yixin Wan | Kuan-Hao Huang | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2023

Syntactically controlled paraphrase generation requires language models to generate paraphrases for sentences according to specific syntactic structures. Existing fine-tuning methods on this task is costly, as all parameters of the model need to be updated during the training process. Inspired by recent studies on parameter-efficient learning, we propose Parse-Instructed Prefix (PIP), a novel adaptation of prefix-tuning to tune large pre-trained language models on syntactically controlled paraphrase generation task in a low-data setting with significantly less training cost. We introduce two methods to instruct a model’s encoder prefix to capture syntax-related knowledge: direct initiation (PIP-Direct) and indirect optimization (PIP-Indirect). Comparing to traditional fine-tuning methods for this task, PIP is a compute-efficient alternative with 10 times less learnable parameters. Comparing to existing prefix-tuning methods, PIP excels at capturing syntax control information, achieving significantly higher performance at the same level of learnable parameter count.

pdf
Enhancing Unsupervised Semantic Parsing with Distributed Contextual Representations
Zixuan Ling | Xiaoqing Zheng | Jianhan Xu | Jinshu Lin | Kai-Wei Chang | Cho-Jui Hsieh | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2023

We extend a non-parametric Bayesian model of (Titov and Klementiev, 2011) to deal with homonymy and polysemy by leveraging distributed contextual word and phrase representations pre-trained on a large collection of unlabelled texts. Then, unsupervised semantic parsing is performed by decomposing sentences into fragments, clustering the fragments to abstract away syntactic variations of the same meaning, and predicting predicate-argument relations between the fragments. To better model the statistical dependencies between predicates and their arguments, we further conduct a hierarchical Pitman-Yor process. An improved Metropolis-Hastings merge-split sampler is proposed to speed up the mixing and convergence of Markov chains by leveraging pre-trained distributed representations. The experimental results show that the models achieve better accuracy on both question-answering and relation extraction tasks.

pdf
“Kelly is a Warm Person, Joseph is a Role Model”: Gender Biases in LLM-Generated Reference Letters
Yixin Wan | George Pu | Jiao Sun | Aparna Garimella | Kai-Wei Chang | Nanyun Peng
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.

pdf
Dataset Bias Mitigation in Multiple-Choice Visual Question Answering and Beyond
Zhecan Wang | Long Chen | Haoxuan You | Keyang Xu | Yicheng He | Wenhao Li | Noel Codella | Kai-Wei Chang | Shih-Fu Chang
Findings of the Association for Computational Linguistics: EMNLP 2023

Vision-language (VL) understanding tasks evaluate models’ comprehension of complex visual scenes through multiple-choice questions. However, we have identified two dataset biases that models can exploit as shortcuts to resolve various VL tasks correctly without proper understanding. The first type of dataset bias is Unbalanced Matching bias, where the correct answer overlaps the question and image more than the incorrect answers. The second type of dataset bias is Distractor Similarity bias, where incorrect answers are overly dissimilar to the correct answer but significantly similar to other incorrect answers within the same sample. To address these dataset biases, we first propose Adversarial Data Synthesis (ADS) to generate synthetic training and debiased evaluation data. We then introduce Intra-sample Counterfactual Training (ICT) to assist models in utilizing the synthesized training data, particularly the counterfactual data, via focusing on intra-sample differentiation. Extensive experiments demonstrate the effectiveness of ADS and ICT in consistently improving model performance across different benchmarks, even in domain-shifted scenarios.

pdf
Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona Biases in Dialogue Systems
Yixin Wan | Jieyu Zhao | Aman Chadha | Nanyun Peng | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent advancements in Large Language Models empower them to follow freeform instructions, including imitating generic or specific demographic personas in conversations. We define generic personas to represent demographic groups, such as “an Asian person”, whereas specific personas may take the form of specific popular Asian names like “Yumi”. While the adoption of personas enriches user experiences by making dialogue systems more engaging and approachable, it also casts a shadow of potential risk by exacerbating social biases within model responses, thereby causing societal harm through interactions with users. In this paper, we systematically study “persona biases”, which we define to be the sensitivity of dialogue models’ harmful behaviors contingent upon the personas they adopt. We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement. Additionally, we propose to investigate persona biases by experimenting with UNIVERSALPERSONA, a systematically constructed persona dataset encompassing various types of both generic and specific model personas. Through benchmarking on four different models- including Blender, ChatGPT, Alpaca, and Vicuna- our study uncovers significant persona biases in dialogue systems. Our findings also underscore the pressing need to revisit the use of personas in dialogue agents to ensure safe application.

pdf
IdealGPT: Iteratively Decomposing Vision and Language Reasoning via Large Language Models
Haoxuan You | Rui Sun | Zhecan Wang | Long Chen | Gengyu Wang | Hammad Ayyubi | Kai-Wei Chang | Shih-Fu Chang
Findings of the Association for Computational Linguistics: EMNLP 2023

The field of vision-and-language (VL) understanding has made unprecedented progress with end-to-end large pre-trained VL models (VLMs). However, they still fall short in zero-shot reasoning tasks that require multi-step inferencing. To achieve this goal, previous works resort to a divide-and-conquer pipeline. In this paper, we argue that previous efforts have several inherent shortcomings: 1) They rely on domain-specific sub-question decomposing models. 2) They force models to predict the final answer even if the sub-questions or sub-answers provide insufficient information. We address these limitations via IdealGPT, a framework that iteratively decomposes VL reasoning using large language models (LLMs). Specifically, IdealGPT utilizes an LLM to generate sub-questions, a VLM to provide corresponding sub-answers, and another LLM to reason to achieve the final answer. These three modules perform the divide-and-conquer procedure iteratively until the model is confident about the final answer to the main question. We evaluate IdealGPT on multiple challenging VL reasoning tasks under a zero-shot setting. In particular, our IdealGPT outperforms the best existing GPT-4-like models by an absolute 10% on VCR and 15% on SNLI-VE. Code is available at https://github.com/Hxyou/IdealGPT.

pdf
Retrieval Enhanced Data Augmentation for Question Answering on Privacy Policies
Md Rizwan Parvez | Jianfeng Chi | Wasi Uddin Ahmad | Yuan Tian | Kai-Wei Chang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Prior studies in privacy policies frame the question answering (QA) task as identifying the most relevant text segment or a list of sentences from a policy document given a user query. Existing labeled datasets are heavily imbalanced (only a few relevant segments), limiting the QA performance in this domain. In this paper, we develop a data augmentation framework based on ensembling retriever models that captures the relevant text segments from unlabeled policy documents and expand the positive examples in the training set. In addition, to improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascaded them with noise reduction oracles. Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%. Our ablation studies provide further insights into the effectiveness of our approach.

pdf
Summarize and Generate to Back-translate: Unsupervised Translation of Programming Languages
Wasi Uddin Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Back-translation is widely known for its effectiveness in neural machine translation when there is little to no parallel data. In this approach, a source-to-target model is coupled with a target-to-source model trained in parallel. The target-to-source model generates noisy sources, while the source-to-target model is trained to reconstruct the targets and vice versa. Recent developments of multilingual pre-trained sequence-to-sequence models for programming languages have been very effective for a broad spectrum of downstream software engineering tasks. Hence, training them to build programming language translation systems via back-translation is compelling. However, these models cannot be further trained via back-translation since they learn to output sequences in the same language as the inputs during pre-training. As an alternative, we propose performing back-translation via code summarization and generation. In code summarization, a model learns to generate natural language (NL) summaries given code snippets. In code generation, the model learns to do the opposite. Therefore, target-to-source generation in back-translation can be viewed as a target-to-NL-to-source generation. We show that our proposed approach performs competitively with state-of-the-art methods. We have made the code publicly available.

pdf bib
Self-Augmentation Improves Zero-Shot Cross-Lingual Transfer
Fei Wang | Kuan-Hao Huang | Kai-Wei Chang | Muhao Chen
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

pdf bib
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023)
Anaelia Ovalle | Kai-Wei Chang | Ninareh Mehrabi | Yada Pruksachatkun | Aram Galystan | Jwala Dhamala | Apurv Verma | Trista Cao | Anoop Kumar | Rahul Gupta
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023)

pdf
LACMA: Language-Aligning Contrastive Learning with Meta-Actions for Embodied Instruction Following
Cheng-Fu Yang | Yen-Chun Chen | Jianwei Yang | Xiyang Dai | Lu Yuan | Yu-Chiang Wang | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

End-to-end Transformers have demonstrated an impressive success rate for Embodied Instruction Following when the environment has been seen in training. However, they tend to struggle when deployed in an unseen environment. This lack of generalizability is due to the agent’s insensitivity to subtle changes in natural language instructions. To mitigate this issue, we propose explicitly aligning the agent’s hidden states with the instructions via contrastive learning. Nevertheless, the semantic gap between high-level language instructions and the agent’s low-level action space remains an obstacle. Therefore, we further introduce a novel concept of meta-actions to bridge the gap. Meta-actions are ubiquitous action patterns that can be parsed from the original action sequence. These patterns represent higher-level semantics that are intuitively aligned closer to the instructions. When meta-actions are applied as additional training signals, the agent generalizes better to unseen environments. Compared to a strong multi-modal Transformer baseline, we achieve a significant 4.5% absolute gain in success rate in unseen environments of ALFRED Embodied Instruction Following. Additional analysis shows that the contrastive objective and meta-actions are complementary in achieving the best results, and the resulting agent better aligns its states with corresponding instructions, making it more suitable for real-world embodied agents.

pdf
Active Instruction Tuning: Improving Cross-Task Generalization by Training on Prompt Sensitive Tasks
Po-Nien Kung | Fan Yin | Di Wu | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions. However, how to select new tasks to improve the performance and generalizability of IT models remains an open question. Training on all existing tasks is impractical due to prohibiting computation requirements, and randomly selecting tasks can lead to suboptimal performance. In this work, we propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks. We represent the informativeness of new tasks with the disagreement of the current model outputs over perturbed prompts. Our experiments on NIV2 and Self-Instruct datasets demonstrate that our method consistently outperforms other baseline strategies for task selection, achieving better out-of-distribution generalization with fewer training tasks. Additionally, we introduce a task map that categorizes and diagnoses tasks based on prompt uncertainty and prediction probability. We discover that training on ambiguous (prompt-uncertain) tasks improves generalization while training on difficult (prompt-certain and low-probability) tasks offers no benefit, underscoring the importance of task selection for instruction tuning.

pdf
Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation
Da Yin | Xiao Liu | Fan Yin | Ming Zhong | Hritik Bansal | Jiawei Han | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Instruction tuning has emerged to enhance the capabilities of large language models (LLMs) to comprehend instructions and generate appropriate responses. Existing methods either manually annotate or employ LLM (e.g., GPT-series) to generate data for instruction tuning. However, they often overlook associating instructions with existing annotated datasets. In this paper, we propose Dynosaur, a dynamic growth paradigm for the automatic curation of instruction-tuning data. Based on the metadata of existing datasets, we use LLMs to automatically construct instruction-tuning data by identifying relevant data fields and generating appropriate instructions. By leveraging the existing annotated datasets, Dynosaur offers several advantages: 1) it reduces the API cost for generating instructions (e.g., it costs less than $12 USD by calling GPT-3.5-turbo for generating 800K instruction tuning samples; 2) it provides high-quality data for instruction tuning (e.g., it performs better than Alpaca and Flan on Super-NI and Longform with comparable data sizes); and 3) it supports the continuous improvement of models by generating instruction-tuning data when a new annotated dataset becomes available. We further investigate a continual learning scheme for learning with the ever-growing instruction-tuning dataset, and demonstrate that replaying tasks with diverse instruction embeddings not only helps mitigate forgetting issues but generalizes to unseen tasks better. Code and data are available at https://github.com/WadeYin9712/Dynosaur.

pdf
Text encoders bottleneck compositionality in contrastive vision-language models
Amita Kamath | Jack Hessel | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Performant vision-language (VL) models like CLIP represent captions using a single vector. How much information about language is lost in this bottleneck? We first curate CompPrompts, a set of increasingly compositional image captions that VL models should be able to capture (e.g., single object, to object+property, to multiple interacting objects). Then, we train text-only recovery probes that aim to reconstruct captions from single-vector text representations produced by several VL models. This approach does not require images, allowing us to test on a broader range of scenes compared to prior work. We find that: 1) CLIP’s text encoder falls short on more compositional inputs, including object relationships, attribute-object association, counting, and negations; 2) some text encoders work significantly better than others; and 3) text-only recovery performance predicts multimodal matching performance on ControlledImCaps: a new evaluation benchmark we collect and release consisting of fine-grained compositional images and captions. Specifically, our results suggest text-only recoverability is a necessary (but not sufficient) condition for modeling compositional factors in contrastive VL models. We release our datasets and code.

pdf
Rethinking Model Selection and Decoding for Keyphrase Generation with Pre-trained Sequence-to-Sequence Models
Di Wu | Wasi Ahmad | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Keyphrase Generation (KPG) is a longstanding task in NLP with widespread applications. The advent of sequence-to-sequence (seq2seq) pre-trained language models (PLMs) has ushered in a transformative era for KPG, yielding promising performance improvements. However, many design decisions remain unexplored and are often made arbitrarily. This paper undertakes a systematic analysis of the influence of model selection and decoding strategies on PLM-based KPG. We begin by elucidating why seq2seq PLMs are apt for KPG, anchored by an attention-driven hypothesis. We then establish that conventional wisdom for selecting seq2seq PLMs lacks depth: (1) merely increasing model size or performing task-specific adaptation is not parameter-efficient; (2) although combining in-domain pre-training with task adaptation benefits KPG, it does partially hinder generalization. Regarding decoding, we demonstrate that while greedy search achieves strong F1 scores, it lags in recall compared with sampling-based methods. Based on these insights, we propose DeSel, a likelihood-based decode-select algorithm for seq2seq PLMs. DeSel improves greedy search by an average of 4.7% semantic F1 across five datasets. Our collective findings pave the way for deeper future investigations into PLM-based KPG.

pdf
What’s “up” with vision-language models? Investigating their struggle with spatial reasoning
Amita Kamath | Jack Hessel | Kai-Wei Chang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent vision-language (VL) models are powerful, but can they reliably distinguish “right” from “left”? We curate three new corpora to quantify model comprehension of such basic spatial relations. These tests isolate spatial reasoning more precisely than existing datasets like VQAv2, e.g., our What’sUp benchmark contains sets of photographs varying only the spatial relations of objects, keeping their identity fixed (see Figure 1: models must comprehend not only the usual case of a dog under a table, but also, the same dog on top of the same table). We evaluate 18 VL models, finding that all perform poorly, e.g., BLIP finetuned on VQAv2, which nears human parity on VQAv2, achieves 56% accuracy on our benchmarks vs. humans at 99%. We conclude by studying causes of this surprising behavior, finding: 1) that popular vision-language pretraining corpora like LAION-2B contain little reliable data for learning spatial relationships; and 2) that basic modeling interventions like up-weighting preposition-containing instances or fine-tuning on our corpora are not sufficient to address the challenges our benchmarks pose. We are hopeful that these corpora will facilitate further research, and we release our data and code at https://github.com/amitakamath/whatsup_vlms.

pdf
Symbolic Chain-of-Thought Distillation: Small Models Can Also “Think” Step-by-Step
Liunian Harold Li | Jack Hessel | Youngjae Yu | Xiang Ren | Kai-Wei Chang | Yejin Choi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Chain-of-thought prompting (e.g., “Let’s think step-by-ste”) primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M—1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.

pdf
GENEVA: Benchmarking Generalizability for Event Argument Extraction with Hundreds of Event Types and Argument Roles
Tanmay Parekh | I-Hung Hsu | Kuan-Hao Huang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works in Event Argument Extraction (EAE) have focused on improving model generalizability to cater to new events and domains. However, standard benchmarking datasets like ACE and ERE cover less than 40 event types and 25 entity-centric argument roles. Limited diversity and coverage hinder these datasets from adequately evaluating the generalizability of EAE models. In this paper, we first contribute by creating a large and diverse EAE ontology. This ontology is created by transforming FrameNet, a comprehensive semantic role labeling (SRL) dataset for EAE, by exploiting the similarity between these two tasks. Then, exhaustive human expert annotations are collected to build the ontology, concluding with 115 events and 220 argument roles, with a significant portion of roles not being entities. We utilize this ontology to further introduce GENEVA, a diverse generalizability benchmarking dataset comprising four test suites aimed at evaluating models’ ability to handle limited data and unseen event type generalization. We benchmark six EAE models from various families. The results show that owing to non-entity argument roles, even the best-performing model can only achieve 39% F1 score, indicating how GENEVA provides new challenges for generalization in EAE. Overall, our large and diverse EAE ontology can aid in creating more comprehensive future resources, while GENEVA is a challenging benchmarking dataset encouraging further research for improving generalizability in EAE. The code and data can be found at https://github.com/PlusLabNLP/GENEVA.

pdf
ParaAMR: A Large-Scale Syntactically Diverse Paraphrase Dataset by AMR Back-Translation
Kuan-Hao Huang | Varun Iyer | I-Hung Hsu | Anoop Kumar | Kai-Wei Chang | Aram Galstyan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Paraphrase generation is a long-standing task in natural language processing (NLP). Supervised paraphrase generation models, which rely on human-annotated paraphrase pairs, are cost-inefficient and hard to scale up. On the other hand, automatically annotated paraphrase pairs (e.g., by machine back-translation), usually suffer from the lack of syntactic diversity – the generated paraphrase sentences are very similar to the source sentences in terms of syntax. In this work, we present ParaAMR, a large-scale syntactically diverse paraphrase dataset created by abstract meaning representation back-translation. Our quantitative analysis, qualitative examples, and human evaluation demonstrate that the paraphrases of ParaAMR are syntactically more diverse compared to existing large-scale paraphrase datasets while preserving good semantic similarity. In addition, we show that ParaAMR can be used to improve on three NLP tasks: learning sentence embeddings, syntactically controlled paraphrase generation, and data augmentation for few-shot learning. Our results thus showcase the potential of ParaAMR for improving various NLP applications.

pdf
Efficient Shapley Values Estimation by Amortization for Text Classification
Chenghao Yang | Fan Yin | He He | Kai-Wei Chang | Xiaofei Ma | Bing Xiang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the popularity of Shapley Values in explaining neural text classification models, computing them is prohibitive for large pretrained models due to a large number of model evaluations. In practice, Shapley Values are often estimated with a small number of stochastic model evaluations. However, we show that the estimated Shapley Values are sensitive to random seed choices – the top-ranked features often have little overlap across different seeds, especially on examples with longer input texts. This can only be mitigated by aggregating thousands of model evaluations, which on the other hand, induces substantial computational overheads. To mitigate the trade-off between stability and efficiency, we develop an amortized model that directly predicts each input feature’s Shapley Value without additional model evaluations. It is trained on a set of examples whose Shapley Values are estimated from a large number of model evaluations to ensure stability. Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup compared to traditional methods. Further, our model does not suffer from stability issues as inference is deterministic. We release our code at https://github.com/yangalan123/Amortized-Interpretability.

pdf
TAGPRIME: A Unified Framework for Relational Structure Extraction
I-Hung Hsu | Kuan-Hao Huang | Shuning Zhang | Wenxin Cheng | Prem Natarajan | Kai-Wei Chang | Nanyun Peng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Many tasks in natural language processing require the extraction of relationship information for a given condition, such as event argument extraction, relation extraction, and task-oriented semantic parsing. Recent works usually propose sophisticated models for each task independently and pay less attention to the commonality of these tasks and to have a unified framework for all the tasks. In this work, we propose to take a unified view of all these tasks and introduce TAGPRIME to address relational structure extraction problems. TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition (such as an event trigger) to the input text. With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition, and hence become more suitable for extracting specific relationships for the condition. Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.

pdf
Resolving Ambiguities in Text-to-Image Generative Models
Ninareh Mehrabi | Palash Goyal | Apurv Verma | Jwala Dhamala | Varun Kumar | Qian Hu | Kai-Wei Chang | Richard Zemel | Aram Galstyan | Rahul Gupta
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language often contains ambiguities that can lead to misinterpretation and miscommunication. While humans can handle ambiguities effectively by asking clarifying questions and/or relying on contextual cues and common-sense knowledge, resolving ambiguities can be notoriously hard for machines. In this work, we study ambiguities that arise in text-to-image generative models. We curate the Text-to-image Ambiguity Benchmark (TAB) dataset to study different types of ambiguities in text-to-image generative models. We then propose the Text-to-ImagE Disambiguation (TIED) framework to disambiguate the prompts given to the text-to-image generative models by soliciting clarifications from the end user. Through automatic and human evaluations, we show the effectiveness of our framework in generating more faithful images aligned with end user intention in the presence of ambiguities.

pdf
A Survey of Deep Learning for Mathematical Reasoning
Pan Lu | Liang Qiu | Wenhao Yu | Sean Welleck | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems in language has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

pdf
PLUE: Language Understanding Evaluation Benchmark for Privacy Policies in English
Jianfeng Chi | Wasi Uddin Ahmad | Yuan Tian | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We evaluate several generic pre-trained language models and continue pre-training them on the collected corpus. We demonstrate that domain-specific continual pre-training offers performance improvements across all tasks. The code and models are released at https://github.com/JFChi/PLUE.

pdf
MetaVL: Transferring In-Context Learning Ability From Language Models to Vision-Language Models
Masoud Monajatipoor | Liunian Harold Li | Mozhdeh Rouhsedaghat | Lin Yang | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Large-scale language models have shown the ability to adapt to a new task via conditioning on a few demonstrations (i.e., in-context learning). However, in the vision-language domain, most large-scale pre-trained vision-language (VL) models do not possess the ability to conduct in-context learning. How can we enable in-context learning for VL models? In this paper, we study an interesting hypothesis: can we transfer the in-context learning ability from the language domain to the VL domain? Specifically, we first meta-trains a language model to perform in-context learning on NLP tasks (as in MetaICL); then we transfer this model to perform VL tasks by attaching a visual encoder. Our experiments suggest that indeed in-context learning ability can be transferred cross modalities: our model considerably improves the in-context learning capability on VL tasks and can even compensate for the size of the model significantly. On VQA, OK-VQA, and GQA, our method could outperform the baseline model while having ~20 times fewer parameters.

pdf
The Tail Wagging the Dog: Dataset Construction Biases of Social Bias Benchmarks
Nikil Selvam | Sunipa Dev | Daniel Khashabi | Tushar Khot | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

How reliably can we trust the scores obtained from social bias benchmarks as faithful indicators of problematic social biases in a given model? In this work, we study this question by contrasting social biases with non-social biases that stem from choices made during dataset construction (which might not even be discernible to the human eye). To do so, we empirically simulate various alternative constructions for a given benchmark based on seemingly innocuous modifications (such as paraphrasing or random-sampling) that maintain the essence of their social bias. On two well-known social bias benchmarks (Winogender and BiasNLI), we observe that these shallow modifications have a surprising effect on the resulting degree of bias across various models and consequently the relative ordering of these models when ranked by measured bias. We hope these troubling observations motivate more robust measures of social biases.

pdf
Indirectly Supervised Natural Language Processing
Wenpeng Yin | Muhao Chen | Ben Zhou | Qiang Ning | Kai-Wei Chang | Dan Roth
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)

This tutorial targets researchers and practitioners who are interested in ML technologies for NLP from indirect supervision. In particular, we will present a diverse thread of indirect supervision studies that try to answer the following questions: (i) when and how can we provide supervision for a target task T, if all we have is data that corresponds to a “related” task T′? (ii) humans do not use exhaustive supervision; they rely on occasional feedback, and learn from incidental signals from various sources; how can we effectively incorporate such supervision in machine learning? (iii) how can we leverage multi-modal supervision to help NLP? To the end, we will discuss several lines of research that address those challenges, including (i) indirect supervision from T ′ that handles T with outputs spanning from a moderate size to an open space, (ii) the use of sparsely occurring and incidental signals, such as partial labels, noisy labels, knowledge-based constraints, and cross-domain or cross-task annotations—all having statistical associations with the task, (iii) principled ways to measure and understand why these incidental signals can contribute to our target tasks, and (iv) indirect supervision from vision-language signals. We will conclude the tutorial by outlining directions for further investigation.

pdf
Does BERT Exacerbate Gender or L1 Biases in Automated English Speaking Assessment?
Alexander Kwako | Yixin Wan | Jieyu Zhao | Mark Hansen | Kai-Wei Chang | Li Cai
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

In English speaking assessment, pretrained large language models (LLMs) such as BERT can score constructed response items as accurately as human raters. Less research has investigated whether LLMs perpetuate or exacerbate biases, which would pose problems for the fairness and validity of the test. This study examines gender and native language (L1) biases in human and automated scores, using an off-the-shelf (OOS) BERT model. Analyses focus on a specific type of bias known as differential item functioning (DIF), which compares examinees of similar English language proficiency. Results show that there is a moderate amount of DIF, based on examinees’ L1 background in grade band 912. DIF is higher when scored by an OOS BERT model, indicating that BERT may exacerbate this bias; however, in practical terms, the degree to which BERT exacerbates DIF is very small. Additionally, there is more DIF for longer speaking items and for older examinees, but BERT does not exacerbate these patterns of DIF.

2022

pdf
How well can Text-to-Image Generative Models understand Ethical Natural Language Interventions?
Hritik Bansal | Da Yin | Masoud Monajatipoor | Kai-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Text-to-image generative models have achieved unprecedented success in generating high-quality images based on natural language descriptions. However, it is shown that these models tend to favor specific social groups when prompted with neutral text descriptions (e.g., ‘a photo of a lawyer’). Following Zhao et al. (2021), we study the effect on the diversity of the generated images when adding ethical intervention that supports equitable judgment (e.g., ‘if all individuals can be a lawyer irrespective of their gender’) in the input prompts. To this end, we introduce an Ethical NaTural Language Interventions in Text-to-Image GENeration (ENTIGEN) benchmark dataset to evaluate the change in image generations conditional on ethical interventions across three social axes – gender, skin color, and culture. Through CLIP-based and human evaluation on minDALL.E, DALL.E-mini and Stable Diffusion, we find that the model generations cover diverse social groups while preserving the image quality. In some cases, the generations would be anti-stereotypical (e.g., models tend to create images with individuals that are perceived as man when fed with prompts about makeup) in the presence of ethical intervention. Preliminary studies indicate that a large change in the model predictions is triggered by certain phrases such as ‘irrespective of gender’ in the context of gender bias in the ethical interventions. We release code and annotated data at https://github.com/Hritikbansal/entigen_emnlp.

pdf
GeoMLAMA: Geo-Diverse Commonsense Probing on Multilingual Pre-Trained Language Models
Da Yin | Hritik Bansal | Masoud Monajatipoor | Liunian Harold Li | Kai-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent work has shown that Pre-trained Language Models (PLMs) store the relational knowledge learned from data and utilize it for performing downstream tasks. However, commonsense knowledge across different regions may vary. For instance, the color of bridal dress is white in American weddings whereas it is red in Chinese weddings. In this paper, we introduce a benchmark dataset, Geo-diverse Commonsense Multilingual Language Models Analysis (GeoMLAMA), for probing the diversity of the relational knowledge in multilingual PLMs. GeoMLAMA contains 3125 prompts in English, Chinese, Hindi, Persian, and Swahili, with a wide coverage of concepts shared by people from American, Chinese, Indian, Iranian and Kenyan cultures. We benchmark 11 standard multilingual PLMs on GeoMLAMA. Interestingly, we find that 1) larger multilingual PLMs variants do not necessarily store geo-diverse concepts better than its smaller variant; 2) multilingual PLMs are not intrinsically biased towards knowledge from the Western countries (the United States); 3) the native language of a country may not be the best language to probe its knowledge and 4) a language may better probe knowledge about a non-native country than its native country.

pdf
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation
Fan Yin | Yao Li | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Adversarial Examples Detection (AED) is a crucial defense technique against adversarial attacks and has drawn increasing attention from the Natural Language Processing (NLP) community. Despite the surge of new AED methods, our studies show that existing methods heavily rely on a shortcut to achieve good performance. In other words, current search-based adversarial attacks in NLP stop once model predictions change, and thus most adversarial examples generated by those attacks are located near model decision boundaries. To surpass this shortcut and fairly evaluate AED methods, we propose to test AED methods with Far Boundary (FB) adversarial examples. Existing methods show worse than random guess performance under this scenario. To overcome this limitation, we propose a new technique, ADDMU, adversary detection with data and model uncertainty, which combines two types of uncertainty estimation for both regular and FB adversarial example detection. Our new method outperforms previous methods by 3.6 and 6.0 AUC points under each scenario. Finally, our analysis shows that the two types of uncertainty provided by ADDMU can be leveraged to characterize adversarialexamples and identify the ones that contribute most to model’s robustness in adversarial training.

pdf
Understanding ME? Multimodal Evaluation for Fine-grained Visual Commonsense
Zhecan Wang | Haoxuan You | Yicheng He | Wenhao Li | Kai-Wei Chang | Shih-Fu Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Visual commonsense understanding requires Vision Language (VL) models to not only understand image and text but also cross-reference in-between to fully integrate and achieve comprehension of the visual scene described. Recently, various approaches have been developed and have achieved high performance on visual commonsense benchmarks. However, it is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources. To provide an in-depth analysis, we present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models’ understanding of the visual scene, text, and related knowledge. We then take a step further to show that training with the ME data boosts the model’s performance in standard VCR evaluation. Lastly, our in-depth analysis and comparison reveal interesting findings: (1) semantically low-level information can assist the learning of high-level information but not the opposite; (2) visual information is generally under utilization compared with text.

pdf
Empowering Language Models with Knowledge Graph Reasoning for Open-Domain Question Answering
Ziniu Hu | Yichong Xu | Wenhao Yu | Shuohang Wang | Ziyi Yang | Chenguang Zhu | Kai-Wei Chang | Yizhou Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Answering open-domain questions requires world knowledge about in-context entities. As pre-trained Language Models (LMs) lack the power to store all required knowledge, external knowledge sources, such as knowledge graphs, are often used to augment LMs. In this work, we propose knOwledge REasOning empowered Language Model(OREO-LM), which consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs to interact with a differentiable Knowledge Graph Reasoning module collaboratively. In this way, LM guides KG to walk towards the desired answer, while the retrieved knowledge improves LM.By adopting OREO-LM to RoBERTa and T5, we show significant performance gain, achieving state-of-art results in the Closed-Book setting. The performance enhancement is mainly from the KG reasoning’s capacity to infer missing relational facts. In addition, OREO-LM provides reasoning paths as rationales to interpret the model’s decision.

pdf
Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal
Umang Gupta | Jwala Dhamala | Varun Kumar | Apurv Verma | Yada Pruksachatkun | Satyapriya Krishna | Rahul Gupta | Kai-Wei Chang | Greg Ver Steeg | Aram Galstyan
Findings of the Association for Computational Linguistics: ACL 2022

Language models excel at generating coherent text, and model compression techniques such as knowledge distillation have enabled their use in resource-constrained settings. However, these models can be biased in multiple ways, including the unfounded association of male and female genders with gender-neutral professions. Therefore, knowledge distillation without any fairness constraints may preserve or exaggerate the teacher model’s biases onto the distilled model. To this end, we present a novel approach to mitigate gender disparity in text generation by learning a fair model during knowledge distillation. We propose two modifications to the base knowledge distillation based on counterfactual role reversal—modifying teacher probabilities and augmenting the training set. We evaluate gender polarity across professions in open-ended text generated from the resulting distilled and finetuned GPT–2 models and demonstrate a substantial reduction in gender disparity with only a minor compromise in utility. Finally, we observe that language models that reduce gender polarity in language generation do not improve embedding fairness or downstream classification fairness.

pdf
Towards Adversarially Robust Text Classifiers by Learning to Reweight Clean Examples
Jianhan Xu | Cenyuan Zhang | Xiaoqing Zheng | Linyang Li | Cho-Jui Hsieh | Kai-Wei Chang | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2022

Most of the existing defense methods improve the adversarial robustness by making the models adapt to the training set augmented with some adversarial examples. However, the augmented adversarial examples may not be natural, which might distort the training distribution, resulting in inferior performance both in clean accuracy and adversarial robustness. In this study, we explore the feasibility of introducing a reweighting mechanism to calibrate the training distribution to obtain robust models. We propose to train text classifiers by a sample reweighting method in which the example weights are learned to minimize the loss of a validation set mixed with the clean examples and their adversarial ones in an online learning manner. Through extensive experiments, we show that there exists a reweighting mechanism to make the models more robust against adversarial attacks without the need to craft the adversarial examples for the entire training set.

pdf
Improving the Adversarial Robustness of NLP Models by Information Bottleneck
Cenyuan Zhang | Xiang Zhou | Yixin Wan | Xiaoqing Zheng | Kai-Wei Chang | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics: ACL 2022

Existing studies have demonstrated that adversarial examples can be directly attributed to the presence of non-robust features, which are highly predictive, but can be easily manipulated by adversaries to fool NLP models. In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory. Through extensive experiments, we show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy, exceeding performances of all the previously reported defense methods while suffering almost no performance drop in clean accuracy on SST-2, AGNEWS and IMDB datasets.

pdf
On Measures of Biases and Harms in NLP
Sunipa Dev | Emily Sheng | Jieyu Zhao | Aubrie Amstutz | Jiao Sun | Yu Hou | Mattie Sanseverino | Jiin Kim | Akihiro Nishi | Nanyun Peng | Kai-Wei Chang
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Recent studies show that Natural Language Processing (NLP) technologies propagate societal biases about demographic groups associated with attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While existing works propose bias evaluation and mitigation methods for various tasks, there remains a need to cohesively understand the biases and the specific harms they measure, and how different measures compare with each other. To address this gap, this work presents a practical framework of harms and a series of questions that practitioners can answer to guide the development of bias measures. As a validation of our framework and documentation questions, we also present several case studies of how existing bias measures in NLP—both intrinsic measures of bias in representations and extrinsic measures of bias of downstream applications—can be aligned with different harms and how our proposed documentation questions facilitates more holistic understanding of what bias measures are measuring.

pdf
Representation Learning for Resource-Constrained Keyphrase Generation
Di Wu | Wasi Ahmad | Sunipa Dev | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2022

State-of-the-art keyphrase generation methods generally depend on large annotated datasets, limiting their performance in domains with limited annotated data. To overcome this challenge, we design a data-oriented approach that first identifies salient information using retrieval-based corpus-level statistics, and then learns a task-specific intermediate representation based on a pre-trained language model using large-scale unlabeled documents. We introduce salient span recovery and salient span prediction as denoising training objectives that condense the intra-article and inter-article knowledge essential for keyphrase generation. Through experiments on multiple keyphrase generation benchmarks, we show the effectiveness of the proposed approach for facilitating low-resource keyphrase generation and zero-shot domain adaptation. Our method especially benefits the generation of absent keyphrases, approaching the performance of models trained with large training sets.

pdf
Unsupervised Syntactically Controlled Paraphrase Generation with Abstract Meaning Representations
Kuan-Hao Huang | Varun Iyer | Anoop Kumar | Sriram Venkatapathy | Kai-Wei Chang | Aram Galstyan
Findings of the Association for Computational Linguistics: EMNLP 2022

Syntactically controlled paraphrase generation has become an emerging research direction in recent years. Most existing approaches require annotated paraphrase pairs for training and are thus costly to extend to new domains. Unsupervised approaches, on the other hand, do not need paraphrase pairs but suffer from relatively poor performance in terms of syntactic control and quality of generated paraphrases. In this paper, we demonstrate that leveraging Abstract Meaning Representations (AMR) can greatly improve the performance of unsupervised syntactically controlled paraphrase generation.Our proposed model, AMR-enhanced Paraphrase Generator (AMRPG), separately encodes the AMR graph and the constituency parse of the input sentence into two disentangled semantic and syntactic embeddings. A decoder is then learned to reconstruct the input sentence from the semantic and syntactic embeddings. Our experiments show that AMRPG generates more accurate syntactically controlled paraphrases, both quantitatively and qualitatively, compared to the existing unsupervised approaches. We also demonstrate that the paraphrases generated by AMRPG can be used for data augmentation to improve the robustness of NLP models.

pdf
Investigating Ensemble Methods for Model Robustness Improvement of Text Classifiers
Jieyu Zhao | Xuezhi Wang | Yao Qin | Jilin Chen | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2022

Large pre-trained language models have shown remarkable performance over the past few years. These models, however, sometimes learn superficial features from the dataset and cannot generalize to the distributions that are dissimilar to the training scenario. There have been several approaches proposed to reduce model’s reliance on these bias features which can improve model robustness in the out-of-distribution setting. However, existing methods usually use a fixed low-capacity model to deal with various bias features, which ignore the learnability of those features. In this paper, we analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases. We further show that by choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.

pdf
Conditional Supervised Contrastive Learning for Fair Text Classification
Jianfeng Chi | William Shand | Yaodong Yu | Kai-Wei Chang | Han Zhao | Yuan Tian
Findings of the Association for Computational Linguistics: EMNLP 2022

Contrastive representation learning has gained much attention due to its superior performance in learning representations from both image and sequential data. However, the learned representations could potentially lead to performance disparities in downstream tasks, such as increased silencing of underrepresented groups in toxicity comment classification. In light of this challenge, in this work, we study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning. Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives, and then propose to use conditional supervised contrastive objectives to learn fair representations for text classification. We conduct experiments on two text datasets to demonstrate the effectiveness of our approaches in balancing the trade-offs between task performance and bias mitigation among existing baselines for text classification. Furthermore, we also show that the proposed methods are stable in different hyperparameter settings.

pdf
Find Someone Who: Visual Commonsense Understanding in Human-Centric Grounding
Haoxuan You | Rui Sun | Zhecan Wang | Kai-Wei Chang | Shih-Fu Chang
Findings of the Association for Computational Linguistics: EMNLP 2022

From a visual scene containing multiple people, human is able to distinguish each individual given the context descriptions about what happened before, their mental/physical states or intentions, etc. Above ability heavily relies on human-centric commonsense knowledge and reasoning. For example, if asked to identify the “person who needs healing” in an image, we need to first know that they usually have injuries or suffering expressions, then find the corresponding visual clues before finally grounding the person. We present a new commonsense task, Human-centric Commonsense Grounding, that tests the models’ ability to ground individuals given the context descriptions about what happened before, and their mental/physical states or intentions. We further create a benchmark, HumanCog, a dataset with 130k grounded commonsensical descriptions annotated on 67k images, covering diverse types of commonsense and visual scenes. We set up a context-object-aware method as a strong baseline that outperforms previous pre-trained and non-pretrained models. Further analysis demonstrates that rich visual commonsense and powerful integration of multi-modal commonsense are essential, which sheds light on future works. Data and code will be available at https://github.com/Hxyou/HumanCog.

pdf
Weight Perturbation as Defense against Adversarial Word Substitutions
Jianhan Xu | Linyang Li | Jiping Zhang | Xiaoqing Zheng | Kai-Wei Chang | Cho-Jui Hsieh | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2022

The existence and pervasiveness of textual adversarial examples have raised serious concerns to security-critical applications. Many methods have been developed to defend against adversarial attacks for neural natural language processing (NLP) models.Adversarial training is one of the most successful defense methods by adding some random or intentional perturbations to the original input texts and making the models robust to the perturbed examples.In this study, we explore the feasibility of improving the adversarial robustness of NLP models by performing perturbations in the parameter space rather than the input feature space.The weight perturbation helps to find a better solution (i.e., the values of weights) that minimizes the adversarial loss among other feasible solutions.We found that the weight perturbation can significantly improve the robustness of NLP models when it is combined with the perturbation in the input embedding space, yielding the highest accuracy on both clean and adversarial examples across different datasets.

pdf
On the Sensitivity and Stability of Model Interpretations in NLP
Fan Yin | Zhouxing Shi | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent years have witnessed the emergence of a variety of post-hoc interpretations that aim to uncover how natural language processing (NLP) models make predictions. Despite the surge of new interpretation methods, it remains an open problem how to define and quantitatively measure the faithfulness of interpretations, i.e., to what extent interpretations reflect the reasoning process by a model. We propose two new criteria, sensitivity and stability, that provide complementary notions of faithfulness to the existed removal-based criteria. Our results show that the conclusion for how faithful interpretations are could vary substantially based on different notions. Motivated by the desiderata of sensitivity and stability, we introduce a new class of interpretation methods that adopt techniques from adversarial robustness. Empirical results show that our proposed methods are effective under the new criteria and overcome limitations of gradient-based methods on removal-based criteria. Besides text classification, we also apply interpretation methods and metrics to dependency parsing. Our results shed light on understanding the diverse set of interpretations.

pdf
Multilingual Generative Language Models for Zero-Shot Cross-Lingual Event Argument Extraction
Kuan-Hao Huang | I-Hung Hsu | Prem Natarajan | Kai-Wei Chang | Nanyun Peng
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a study on leveraging multilingual pre-trained generative language models for zero-shot cross-lingual event argument extraction (EAE). By formulating EAE as a language generation task, our method effectively encodes event structures and captures the dependencies between arguments. We design language-agnostic templates to represent the event argument structures, which are compatible with any language, hence facilitating the cross-lingual transfer. Our proposed model finetunes multilingual pre-trained generative language models to generate sentences that fill in the language-agnostic template with arguments extracted from the input passage. The model is trained on source languages and is then directly applied to target languages for event argument extraction. Experiments demonstrate that the proposed model outperforms the current state-of-the-art models on zero-shot cross-lingual EAE. Comprehensive studies and error analyses are presented to better understand the advantages and the current limitations of using generative language models for zero-shot cross-lingual transfer EAE.

pdf
Measuring Fairness of Text Classifiers via Prediction Sensitivity
Satyapriya Krishna | Rahul Gupta | Apurv Verma | Jwala Dhamala | Yada Pruksachatkun | Kai-Wei Chang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the rapid growth in language processing applications, fairness has emerged as an important consideration in data-driven solutions. Although various fairness definitions have been explored in the recent literature, there is lack of consensus on which metrics most accurately reflect the fairness of a system. In this work, we propose a new formulation – accumulated prediction sensitivity, which measures fairness in machine learning models based on the model’s prediction sensitivity to perturbations in input features. The metric attempts to quantify the extent to which a single prediction depends on a protected attribute, where the protected attribute encodes the membership status of an individual in a protected group. We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness. It also correlates well with humans’ perception of fairness. We conduct experiments on two text classification datasets – Jigsaw Toxicity, and Bias in Bios, and evaluate the correlations between metrics and manual annotations on whether the model produced a fair outcome. We observe that the proposed fairness metric based on prediction sensitivity is statistically significantly more correlated with human annotation than the existing counterfactual fairness metric.

pdf
On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations
Yang Trista Cao | Yada Pruksachatkun | Kai-Wei Chang | Rahul Gupta | Varun Kumar | Jwala Dhamala | Aram Galstyan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Multiple metrics have been introduced to measure fairness in various natural language processing tasks. These metrics can be roughly categorized into two categories: 1) extrinsic metrics for evaluating fairness in downstream applications and 2) intrinsic metrics for estimating fairness in upstream contextualized language representation models. In this paper, we conduct an extensive correlation study between intrinsic and extrinsic metrics across bias notions using 19 contextualized language models. We find that intrinsic and extrinsic metrics do not necessarily correlate in their original setting, even when correcting for metric misalignments, noise in evaluation datasets, and confounding factors such as experiment configuration for extrinsic metrics.

pdf
Socially Aware Bias Measurements for Hindi Language Representations
Vijit Malik | Sunipa Dev | Akihiro Nishi | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Language representations are an efficient tool used across NLP, but they are strife with encoded societal biases. These biases are studied extensively, but with a primary focus on English language representations and biases common in the context of Western society. In this work, we investigate the biases present in Hindi language representations such as caste and religion associated biases. We demonstrate how biases are unique to specific language representations based on the history and culture of the region they are widely spoken in, and also how the same societal bias (such as binary gender associated biases) when investigated across languages is encoded by different words and text spans. With this work, we emphasize on the necessity of social-awareness along with linguistic and grammatical artefacts when modeling language representations, in order to understand the biases encoded.

pdf
DEGREE: A Data-Efficient Generation-Based Event Extraction Model
I-Hung Hsu | Kuan-Hao Huang | Elizabeth Boschee | Scott Miller | Prem Natarajan | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Event extraction requires high-quality expert human annotations, which are usually expensive. Therefore, learning a data-efficient event extraction model that can be trained with only a few labeled examples has become a crucial challenge. In this paper, we focus on low-resource end-to-end event extraction and propose DEGREE, a data-efficient model that formulates event extraction as a conditional generation problem. Given a passage and a manually designed prompt, DEGREE learns to summarize the events mentioned in the passage into a natural sentence that follows a predefined pattern. The final event predictions are then extracted from the generated sentence with a deterministic algorithm. DEGREE has three advantages to learn well with less training data. First, our designed prompts provide semantic guidance for DEGREE to leverage DEGREE and thus better capture the event arguments. Moreover, DEGREE is capable of using additional weakly-supervised information, such as the description of events encoded in the prompts. Finally, DEGREE learns triggers and arguments jointly in an end-to-end manner, which encourages the model to better utilize the shared knowledge and dependencies among them. Our experimental results demonstrate the strong performance of DEGREE for low-resource event extraction.

pdf
Zero-Shot Cross-Lingual Sequence Tagging as Seq2Seq Generation for Joint Intent Classification and Slot Filling
Fei Wang | Kuan-hao Huang | Anoop Kumar | Aram Galstyan | Greg Ver steeg | Kai-wei Chang
Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)

The joint intent classification and slot filling task seeks to detect the intent of an utterance and extract its semantic concepts. In the zero-shot cross-lingual setting, a model is trained on a source language and then transferred to other target languages through multi-lingual representations without additional training data. While prior studies show that pre-trained multilingual sequence-to-sequence (Seq2Seq) models can facilitate zero-shot transfer, there is little understanding on how to design the output template for the joint prediction tasks. In this paper, we examine three aspects of the output template – (1) label mapping, (2) task dependency, and (3) word order. Experiments on the MASSIVE dataset consisting of 51 languages show that our output template significantly improves the performance of pre-trained cross-lingual language models.

pdf bib
Using Item Response Theory to Measure Gender and Racial Bias of a BERT-based Automated English Speech Assessment System
Alexander Kwako | Yixin Wan | Jieyu Zhao | Kai-Wei Chang | Li Cai | Mark Hansen
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

Recent advances in natural language processing and transformer-based models have made it easier to implement accurate, automated English speech assessments. Yet, without careful examination, applications of these models may exacerbate social prejudices based on gender and race. This study addresses the need to examine potential biases of transformer-based models in the context of automated English speech assessment. For this purpose, we developed a BERT-based automated speech assessment system and investigated gender and racial bias of examinees’ automated scores. Gender and racial bias was measured by examining differential item functioning (DIF) using an item response theory framework. Preliminary results, which focused on a single verbal-response item, showed no statistically significant DIF based on gender or race for automated scores.

pdf bib
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)
Apurv Verma | Yada Pruksachatkun | Kai-Wei Chang | Aram Galstyan | Jwala Dhamala | Yang Trista Cao
Proceedings of the 2nd Workshop on Trustworthy Natural Language Processing (TrustNLP 2022)

2021

pdf
“Nice Try, Kiddo”: Investigating Ad Hominems in Dialogue Responses
Emily Sheng | Kai-Wei Chang | Prem Natarajan | Nanyun Peng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Ad hominem attacks are those that target some feature of a person’s character instead of the position the person is maintaining. These attacks are harmful because they propagate implicit biases and diminish a person’s credibility. Since dialogue systems respond directly to user input, it is important to study ad hominems in dialogue responses. To this end, we propose categories of ad hominems, compose an annotated dataset, and build a classifier to analyze human and dialogue system responses to English Twitter posts. We specifically compare responses to Twitter topics about marginalized communities (#BlackLivesMatter, #MeToo) versus other topics (#Vegan, #WFH), because the abusive language of ad hominems could further amplify the skew of power away from marginalized populations. Furthermore, we propose a constrained decoding technique that uses salient n-gram similarity as a soft constraint for top-k sampling to reduce the amount of ad hominems generated. Our results indicate that 1) responses from both humans and DialoGPT contain more ad hominems for discussions around marginalized communities, 2) different quantities of ad hominems in the training data can influence the likelihood of generating ad hominems, and 3) we can use constrained decoding techniques to reduce ad hominems in generated dialogue responses.

pdf
Disentangling Semantics and Syntax in Sentence Embeddings with Pre-trained Language Models
James Y. Huang | Kuan-Hao Huang | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pre-trained language models have achieved huge success on a wide range of NLP tasks. However, contextual representations from pre-trained models contain entangled semantic and syntactic information, and therefore cannot be directly used to derive useful semantic sentence embeddings for some tasks. Paraphrase pairs offer an effective way of learning the distinction between semantics and syntax, as they naturally share semantics and often vary in syntax. In this work, we present ParaBART, a semantic sentence embedding model that learns to disentangle semantics and syntax in sentence embeddings obtained by pre-trained language models. ParaBART is trained to perform syntax-guided paraphrasing, based on a source sentence that shares semantics with the target paraphrase, and a parse tree that specifies the target syntax. In this way, ParaBART learns disentangled semantic and syntactic representations from their respective inputs with separate encoders. Experiments in English show that ParaBART outperforms state-of-the-art sentence embedding models on unsupervised semantic similarity tasks. Additionally, we show that our approach can effectively remove syntactic information from semantic sentence embeddings, leading to better robustness against syntactic variation on downstream semantic tasks.

pdf
Unified Pre-training for Program Understanding and Generation
Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Code summarization and generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART’s effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., “if“ block inside an “else“ block is equivalent to “else if“ block) that are crucial to program semantics and thus excels even with limited annotations.

pdf
Double Perturbation: On the Robustness of Robustness and Counterfactual Bias Evaluation
Chong Zhang | Jieyu Zhao | Huan Zhang | Kai-Wei Chang | Cho-Jui Hsieh
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Robustness and counterfactual bias are usually evaluated on a test dataset. However, are these evaluations robust? If the test dataset is perturbed slightly, will the evaluation results keep the same? In this paper, we propose a “double perturbation” framework to uncover model weaknesses beyond the test dataset. The framework first perturbs the test dataset to construct abundant natural sentences similar to the test data, and then diagnoses the prediction change regarding a single-word substitution. We apply this framework to study two perturbation-based approaches that are used to analyze models’ robustness and counterfactual bias in English. (1) For robustness, we focus on synonym substitutions and identify vulnerable examples where prediction can be altered. Our proposed attack attains high success rates (96.0%-99.8%) in finding vulnerable examples on both original and robustly trained CNNs and Transformers. (2) For counterfactual bias, we focus on substituting demographic tokens (e.g., gender, race) and measure the shift of the expected prediction among constructed sentences. Our method is able to reveal the hidden model biases not directly shown in the test dataset. Our code is available at https://github.com/chong-z/nlp-second-order-attack.

pdf
Adapting Coreference Resolution for Processing Violent Death Narratives
Ankith Uppunda | Susan Cochran | Jacob Foster | Alina Arseniev-Koehler | Vickie Mays | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Coreference resolution is an important compo-nent in analyzing narrative text from admin-istrative data (e.g., clinical or police sources).However, existing coreference models trainedon general language corpora suffer from poortransferability due to domain gaps, especiallywhen they are applied to gender-inclusive datawith lesbian, gay, bisexual, and transgender(LGBT) individuals. In this paper, we an-alyzed the challenges of coreference resolu-tion in an exemplary form of administrativetext written in English: violent death nar-ratives from the USA’s Centers for DiseaseControl’s (CDC) National Violent Death Re-porting System. We developed a set of dataaugmentation rules to improve model perfor-mance using a probabilistic data programmingframework. Experiments on narratives froman administrative database, as well as existinggender-inclusive coreference datasets, demon-strate the effectiveness of data augmentationin training coreference models that can betterhandle text data about LGBT individuals.

pdf
Evaluating the Values of Sources in Transfer Learning
Md Rizwan Parvez | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transfer learning that adapts a model trained on data-rich sources to low-resource targets has been widely applied in natural language processing (NLP). However, when training a transfer model over multiple sources, not every source is equally useful for the target. To better transfer a model, it is essential to understand the values of the sources. In this paper, we develop , an efficient source valuation framework for quantifying the usefulness of the sources (e.g., ) in transfer learning based on the Shapley value method. Experiments and comprehensive analyses on both cross-domain and cross-lingual transfers demonstrate that our framework is not only effective in choosing useful transfer sources but also the source values match the intuitive source-target similarity.

pdf
Unsupervised Vision-and-Language Pre-training Without Parallel Images and Captions
Liunian Harold Li | Haoxuan You | Zhecan Wang | Alireza Zareian | Shih-Fu Chang | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pre-trained contextual vision-and-language (V&L) models have achieved impressive performance on various benchmarks. However, existing models require a large amount of parallel image-caption data for pre-training. Such data are costly to collect and require cumbersome curation. Inspired by unsupervised machine translation, we investigate if a strong V&L representation model can be learned through unsupervised pre-training without image-caption corpora. In particular, we propose to conduct “mask-and-predict” pre-training on text-only and image-only corpora and introduce the object tags detected by an object recognition model as anchor points to bridge two modalities. We find that such a simple approach achieves performance close to a model pre-trained with aligned data, on four English V&L benchmarks. Our work challenges the widely held notion that aligned data is necessary for V&L pre-training, while significantly reducing the amount of supervision needed for V&L models.

pdf
Generating Syntactically Controlled Paraphrases without Using Annotated Parallel Pairs
Kuan-Hao Huang | Kai-Wei Chang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Paraphrase generation plays an essential role in natural language process (NLP), and it has many downstream applications. However, training supervised paraphrase models requires many annotated paraphrase pairs, which are usually costly to obtain. On the other hand, the paraphrases generated by existing unsupervised approaches are usually syntactically similar to the source sentences and are limited in diversity. In this paper, we demonstrate that it is possible to generate syntactically various paraphrases without the need for annotated paraphrase pairs. We propose Syntactically controlled Paraphrase Generator (SynPG), an encoder-decoder based model that learns to disentangle the semantics and the syntax of a sentence from a collection of unannotated texts. The disentanglement enables SynPG to control the syntax of output paraphrases by manipulating the embedding in the syntactic space. Extensive experiments using automatic metrics and human evaluation show that SynPG performs better syntactic control than unsupervised baselines, while the quality of the generated paraphrases is competitive. We also demonstrate that the performance of SynPG is competitive or even better than supervised models when the unannotated data is large. Finally, we show that the syntactically controlled paraphrases generated by SynPG can be utilized for data augmentation to improve the robustness of NLP models.

pdf bib
Proceedings of the First Workshop on Trustworthy Natural Language Processing
Yada Pruksachatkun | Anil Ramakrishna | Kai-Wei Chang | Satyapriya Krishna | Jwala Dhamala | Tanaya Guha | Xiang Ren
Proceedings of the First Workshop on Trustworthy Natural Language Processing

pdf
On the Transferability of Adversarial Attacks against Neural Text Classifier
Liping Yuan | Xiaoqing Zheng | Yi Zhou | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Deep neural networks are vulnerable to adversarial attacks, where a small perturbation to an input alters the model prediction. In many cases, malicious inputs intentionally crafted for one model can fool another model. In this paper, we present the first study to systematically investigate the transferability of adversarial examples for text classification models and explore how various factors, including network architecture, tokenization scheme, word embedding, and model capacity, affect the transferability of adversarial examples. Based on these studies, we propose a genetic algorithm to find an ensemble of models that can be used to induce adversarial examples to fool almost all existing models. Such adversarial examples reflect the defects of the learning process and the data bias in the training set. Finally, we derive word replacement rules that can be used for model diagnostics from these adversarial examples.

pdf
Improving Zero-Shot Cross-Lingual Transfer Learning via Robust Training
Kuan-Hao Huang | Wasi Ahmad | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Pre-trained multilingual language encoders, such as multilingual BERT and XLM-R, show great potential for zero-shot cross-lingual transfer. However, these multilingual encoders do not precisely align words and phrases across languages. Especially, learning alignments in the multilingual embedding space usually requires sentence-level or word-level parallel corpora, which are expensive to be obtained for low-resource languages. An alternative is to make the multilingual encoders more robust; when fine-tuning the encoder using downstream task, we train the encoder to tolerate noise in the contextual embedding spaces such that even if the representations of different languages are not aligned well, the model can still achieve good performance on zero-shot cross-lingual transfer. In this work, we propose a learning strategy for training robust models by drawing connections between adversarial examples and the failure cases of zero-shot cross-lingual transfer. We adopt two widely used robust training methods, adversarial training and randomized smoothing, to train the desired robust model. The experimental results demonstrate that robust training improves zero-shot cross-lingual transfer on text classification tasks. The improvement is more significant in the generalized cross-lingual transfer setting, where the pair of input sentences belong to two different languages.

pdf
Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies
Sunipa Dev | Masoud Monajatipoor | Anaelia Ovalle | Arjun Subramonian | Jeff Phillips | Kai-Wei Chang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Gender is widely discussed in the context of language tasks and when examining the stereotypes propagated by language models. However, current discussions primarily treat gender as binary, which can perpetuate harms such as the cyclical erasure of non-binary gender identities. These harms are driven by model and dataset biases, which are consequences of the non-recognition and lack of understanding of non-binary genders in society. In this paper, we explain the complexity of gender and language around it, and survey non-binary persons to understand harms associated with the treatment of gender as binary in English language technologies. We also detail how current language representations (e.g., GloVe, BERT) capture and perpetuate these harms and related challenges that need to be acknowledged and addressed for representations to equitably encode gender information.

pdf
Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning
Da Yin | Liunian Harold Li | Ziniu Hu | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Commonsense is defined as the knowledge on which everyone agrees. However, certain types of commonsense knowledge are correlated with culture and geographic locations and they are only shared locally. For example, the scenes of wedding ceremonies vary across regions due to different customs influenced by historical and religious factors. Such regional characteristics, however, are generally omitted in prior work. In this paper, we construct a Geo-Diverse Visual Commonsense Reasoning dataset (GD-VCR) to test vision-and-language models’ ability to understand cultural and geo-location-specific commonsense. In particular, we study two state-of-the-art Vision-and-Language models, VisualBERT and ViLBERT trained on VCR, a standard benchmark with images primarily from Western regions. We then evaluate how well the trained models can generalize to answering the questions in GD-VCR. We find that the performance of both models for non-Western regions including East Asia, South Asia, and Africa is significantly lower than that for Western region. We analyze the reasons behind the performance disparity and find that the performance gap is larger on QA pairs that: 1) are concerned with culture-related scenarios, e.g., weddings, religious activities, and festivals; 2) require high-level geo-diverse commonsense reasoning rather than low-order perception and recognition. Dataset and code are released at https://github.com/WadeYin9712/GD-VCR.

pdf
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution
Zongyi Li | Jianhan Xu | Jiehang Zeng | Linyang Li | Xiaoqing Zheng | Qi Zhang | Kai-Wei Chang | Cho-Jui Hsieh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that deep neural network-based models are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks, and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin. We hope this study could provide useful clues for future research on text adversarial defense. Codes are available at https://github.com/RockyLzy/TextDefender.

pdf
Robustness and Adversarial Examples in Natural Language Processing
Kai-Wei Chang | He He | Robin Jia | Sameer Singh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Recent studies show that many NLP systems are sensitive and vulnerable to a small perturbation of inputs and do not generalize well across different datasets. This lack of robustness derails the use of NLP systems in real-world applications. This tutorial aims at bringing awareness of practical concerns about NLP robustness. It targets NLP researchers and practitioners who are interested in building reliable NLP systems. In particular, we will review recent studies on analyzing the weakness of NLP systems when facing adversarial inputs and data with a distribution shift. We will provide the audience with a holistic view of 1) how to use adversarial examples to examine the weakness of NLP models and facilitate debugging; 2) how to enhance the robustness of existing NLP models and defense against adversarial inputs; and 3) how the consideration of robustness affects the real-world NLP applications used in our daily lives. We will conclude the tutorial by outlining future research directions in this area.

pdf
Does Robustness Improve Fairness? Approaching Fairness with Word Substitution Robustness Methods for Text Classification
Yada Pruksachatkun | Satyapriya Krishna | Jwala Dhamala | Rahul Gupta | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?
Jieyu Zhao | Daniel Khashabi | Tushar Khot | Ashish Sabharwal | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Retrieval Augmented Code Generation and Summarization
Md Rizwan Parvez | Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Software developers write a lot of source code and documentation during software development. Intrinsically, developers often recall parts of source code or code summaries that they had written in the past while implementing software or documenting them. To mimic developers’ code or summary generation behavior, we propose a retrieval augmented framework, REDCODER, that retrieves relevant code or summaries from a retrieval database and provides them as a supplement to code generation or summarization models. REDCODER has a couple of uniqueness. First, it extends the state-of-the-art dense retrieval technique to search for relevant code or summaries. Second, it can work with retrieval databases that include unimodal (only code or natural language description) or bimodal instances (code-description pairs). We conduct experiments and extensive analysis on two benchmark datasets of code generation and summarization in Java and Python, and the promising results endorse the effectiveness of our proposed retrieval augmented framework.

pdf
Relation-Guided Pre-Training for Open-Domain Question Answering
Ziniu Hu | Yizhou Sun | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Answering complex open-domain questions requires understanding the latent relations between involving entities. However, we found that the existing QA datasets are extremely imbalanced in some types of relations, which hurts the generalization performance over questions with long-tail relations. To remedy this problem, in this paper, we propose a Relation-Guided Pre-Training (RGPT-QA) framework. We first generate a relational QA dataset covering a wide range of relations from both the Wikidata triplets and Wikipedia hyperlinks. We then pre-train a QA model to infer the latent relations from the question, and then conduct extractive QA to get the target answer entity. We demonstrate that by pre-training with propoed RGPT-QA techique, the popular open-domain QA model, Dense Passage Retriever (DPR), achieves 2.2%, 2.4%, and 6.3% absolute improvement in Exact Match accuracy on Natural Questions, TriviaQA, and WebQuestions. Particularly, we show that RGPT-QA improves significantly on questions with long-tail relations.

pdf
Select, Extract and Generate: Neural Keyphrase Generation with Layer-wise Coverage Attention
Wasi Ahmad | Xiao Bai | Soomin Lee | Kai-Wei Chang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Natural language processing techniques have demonstrated promising results in keyphrase generation. However, one of the major challenges in neural keyphrase generation is processing long documents using deep neural networks. Generally, documents are truncated before given as inputs to neural networks. Consequently, the models may miss essential points conveyed in the target document. To overcome this limitation, we propose SEG-Net, a neural keyphrase generation model that is composed of two major components, (1) a selector that selects the salient sentences in a document and (2) an extractor-generator that jointly extracts and generates keyphrases from the selected sentences. SEG-Net uses Transformer, a self-attentive architecture, as the basic building block with a novel layer-wise coverage attention to summarize most of the points discussed in the document. The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.

pdf
Societal Biases in Language Generation: Progress and Challenges
Emily Sheng | Kai-Wei Chang | Prem Natarajan | Nanyun Peng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Technology for language generation has advanced rapidly, spurred by advancements in pre-training large models on massive amounts of data and the need for intelligent agents to communicate in a natural manner. While techniques can effectively generate fluent text, they can also produce undesirable societal biases that can have a disproportionately negative impact on marginalized populations. Language generation presents unique challenges for biases in terms of direct user interaction and the structure of decoding techniques. To better understand these challenges, we present a survey on societal biases in language generation, focusing on how data and techniques contribute to biases and progress towards reducing biases. Motivated by a lack of studies on biases from decoding techniques, we also conduct experiments to quantify the effects of these techniques. By further discussing general trends and open challenges, we call to attention promising directions for research and the importance of fairness and inclusivity considerations for language generation applications.

pdf
Intent Classification and Slot Filling for Privacy Policies
Wasi Ahmad | Jianfeng Chi | Tu Le | Thomas Norton | Yuan Tian | Kai-Wei Chang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Understanding privacy policies is crucial for users as it empowers them to learn about the information that matters to them. Sentences written in a privacy policy document explain privacy practices, and the constituent text spans convey further specific information about that practice. We refer to predicting the privacy practice explained in a sentence as intent classification and identifying the text spans sharing specific information as slot filling. In this work, we propose PolicyIE, an English corpus consisting of 5,250 intent and 11,788 slot annotations spanning 31 privacy policies of websites and mobile applications. PolicyIE corpus is a challenging real-world benchmark with limited labeled examples reflecting the cost of collecting large-scale annotations from domain experts. We present two alternative neural approaches as baselines, (1) intent classification and slot filling as a joint sequence tagging and (2) modeling them as a sequence-to-sequence (Seq2Seq) learning task. The experiment results show that both approaches perform comparably in intent classification, while the Seq2Seq method outperforms the sequence tagging approach in slot filling by a large margin. We perform a detailed error analysis to reveal the challenges of the proposed corpus.

pdf
Syntax-augmented Multilingual BERT for Cross-lingual Transfer
Wasi Ahmad | Haoran Li | Kai-Wei Chang | Yashar Mehdad
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In recent years, we have seen a colossal effort in pre-training multilingual text encoders using large-scale corpora in many languages to facilitate cross-lingual transfer learning. However, due to typological differences across languages, the cross-lingual transfer is challenging. Nevertheless, language syntax, e.g., syntactic dependencies, can bridge the typological gap. Previous works have shown that pre-trained multilingual encoders, such as mBERT (CITATION), capture language syntax, helping cross-lingual transfer. This work shows that explicitly providing language syntax and training mBERT using an auxiliary objective to encode the universal dependency tree structure helps cross-lingual transfer. We perform rigorous experiments on four NLP tasks, including text classification, question answering, named entity recognition, and task-oriented semantic parsing. The experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks, such as PAWS-X and MLQA, by 1.4 and 1.6 points on average across all languages. In the generalized transfer setting, the performance boosted significantly, with 3.9 and 3.1 points on average in PAWS-X and MLQA.

pdf
Defense against Synonym Substitution-based Adversarial Attacks via Dirichlet Neighborhood Ensemble
Yi Zhou | Xiaoqing Zheng | Cho-Jui Hsieh | Kai-Wei Chang | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Although deep neural networks have achieved prominent performance on many NLP tasks, they are vulnerable to adversarial examples. We propose Dirichlet Neighborhood Ensemble (DNE), a randomized method for training a robust model to defense synonym substitution-based attacks. During training, DNE forms virtual sentences by sampling embedding vectors for each word in an input sentence from a convex hull spanned by the word and its synonyms, and it augments them with the training data. In such a way, the model is robust to adversarial attacks while maintaining the performance on the original clean data. DNE is agnostic to the network architectures and scales to large models (e.g., BERT) for NLP applications. Through extensive experimentation, we demonstrate that our method consistently outperforms recently proposed defense methods by a significant margin across different network architectures and multiple data sets.

2020

pdf
PolicyQA: A Reading Comprehension Dataset for Privacy Policies
Wasi Ahmad | Jianfeng Chi | Yuan Tian | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2020

Privacy policy documents are long and verbose. A question answering (QA) system can assist users in finding the information that is relevant and important to them. Prior studies in this domain frame the QA task as retrieving the most relevant text segment or a list of sentences from the policy document given a question. On the contrary, we argue that providing users with a short text span from policy documents reduces the burden of searching the target information from a lengthy text segment. In this paper, we present PolicyQA, a dataset that contains 25,017 reading comprehension style examples curated from an existing corpus of 115 website privacy policies. PolicyQA provides 714 human-annotated questions written for a wide range of privacy practices. We evaluate two existing neural QA models and perform rigorous analysis to reveal the advantages and challenges offered by PolicyQA.

pdf
Cross-Lingual Dependency Parsing by POS-Guided Word Reordering
Lu Liu | Yi Zhou | Jianhan Xu | Xiaoqing Zheng | Kai-Wei Chang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

We propose a novel approach to cross-lingual dependency parsing based on word reordering. The words in each sentence of a source language corpus are rearranged to meet the word order in a target language under the guidance of a part-of-speech based language model (LM). To obtain the highest reordering score under the LM, a population-based optimization algorithm and its genetic operators are designed to deal with the combinatorial nature of such word reordering. A parser trained on the reordered corpus then can be used to parse sentences in the target language. We demonstrate through extensive experimentation that our approach achieves better or comparable results across 25 target languages (1.73% increase in average), and outperforms a baseline by a significant margin on the languages that are greatly different from the source one. For example, when transferring the English parser to Hindi and Latin, our approach outperforms the baseline by 15.3% and 6.7% respectively.

pdf
Towards Controllable Biases in Language Generation
Emily Sheng | Kai-Wei Chang | Prem Natarajan | Nanyun Peng
Findings of the Association for Computational Linguistics: EMNLP 2020

We present a general approach towards controllable societal biases in natural language generation (NLG). Building upon the idea of adversarial triggers, we develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups. We then analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics. The former scenario enables us to detect the types of biases present in the model. Specifically, we show the effectiveness of our approach at facilitating bias analysis by finding topics that correspond to demographic inequalities in generated text and comparing the relative effectiveness of inducing biases for different demographics. The second scenario is useful for mitigating biases in downstream applications such as dialogue generation. In our experiments, the mitigation technique proves to be effective at equalizing the amount of biases across demographics while simultaneously generating less negatively biased text overall.

pdf
Generating Sports News from Live Commentary: A Chinese Dataset for Sports Game Summarization
Kuan-Hao Huang | Chen Li | Kai-Wei Chang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Sports game summarization focuses on generating news articles from live commentaries. Unlike traditional summarization tasks, the source documents and the target summaries for sports game summarization tasks are written in quite different writing styles. In addition, live commentaries usually contain many named entities, which makes summarizing sports games precisely very challenging. To deeply study this task, we present SportsSum, a Chinese sports game summarization dataset which contains 5,428 soccer games of live commentaries and the corresponding news articles. Additionally, we propose a two-step summarization model consisting of a selector and a rewriter for SportsSum. To evaluate the correctness of generated sports summaries, we design two novel score metrics: name matching score and event matching score. Experimental results show that our model performs better than other summarization baselines on ROUGE scores as well as the two designed scores.

pdf
“The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition
Yichao Zhou | Jyun-Yu Jiang | Jieyu Zhao | Kai-Wei Chang | Wei Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Humor plays an important role in human languages and it is essential to model humor when building intelligence systems. Among different forms of humor, puns perform wordplay for humorous effects by employing words with double entendre and high phonetic similarity. However, identifying and modeling puns are challenging as puns usually involved implicit semantic or phonological tricks. In this paper, we propose Pronunciation-attentive Contextualized Pun Recognition (PCPR) to perceive human humor, detect if a sentence contains puns and locate them in the sentence. PCPR derives contextualized representation for each word in a sentence by capturing the association between the surrounding context and its corresponding phonetic symbols. Extensive experiments are conducted on two benchmark datasets. Results demonstrate that the proposed approach significantly outperforms the state-of-the-art methods in pun detection and location tasks. In-depth analyses verify the effectiveness and robustness of PCPR.

pdf
Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer
Jieyu Zhao | Subhabrata Mukherjee | Saghar Hosseini | Kai-Wei Chang | Ahmed Hassan Awadallah
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Multilingual representations embed words from many languages into a single semantic space such that words with similar meanings are close to each other regardless of the language. These embeddings have been widely used in various settings, such as cross-lingual transfer, where a natural language processing (NLP) model trained on one language is deployed to another language. While the cross-lingual transfer techniques are powerful, they carry gender bias from the source to target languages. In this paper, we study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications. We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations from both the intrinsic and extrinsic perspectives. Experimental results show that the magnitude of bias in the multilingual representations changes differently when we align the embeddings to different target spaces and that the alignment direction can also have an influence on the bias in transfer learning. We further provide recommendations for using the multilingual word representations for downstream tasks.

pdf
Mitigating Gender Bias Amplification in Distribution by Posterior Regularization
Shengyu Jia | Tao Meng | Jieyu Zhao | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Advanced machine learning techniques have boosted the performance of natural language processing. Nevertheless, recent studies, e.g., (CITATION) show that these techniques inadvertently capture the societal bias hidden in the corpus and further amplify it. However, their analysis is conducted only on models’ top predictions. In this paper, we investigate the gender bias amplification issue from the distribution perspective and demonstrate that the bias is amplified in the view of predicted probability distribution over labels. We further propose a bias mitigation approach based on posterior regularization. With little performance loss, our method can almost remove the bias amplification in the distribution. Our study sheds the light on understanding the bias amplification.

pdf
Towards Understanding Gender Bias in Relation Extraction
Andrew Gaut | Tony Sun | Shirlyn Tang | Yuxin Huang | Jing Qian | Mai ElSherief | Jieyu Zhao | Diba Mirza | Elizabeth Belding | Kai-Wei Chang | William Yang Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent developments in Neural Relation Extraction (NRE) have made significant strides towards Automated Knowledge Base Construction. While much attention has been dedicated towards improvements in accuracy, there have been no attempts in the literature to evaluate social biases exhibited in NRE systems. In this paper, we create WikiGenderBias, a distantly supervised dataset composed of over 45,000 sentences including a 10% human annotated test set for the purpose of analyzing gender bias in relation extraction systems. We find that when extracting spouse-of and hypernym (i.e., occupation) relations, an NRE system performs differently when the gender of the target entity is different. However, such disparity does not appear when extracting relations such as birthDate or birthPlace. We also analyze how existing bias mitigation techniques, such as name anonymization, word embedding debiasing, and data augmentation affect the NRE system in terms of maintaining the test performance and reducing biases. Unfortunately, due to NRE models rely heavily on surface level cues, we find that existing bias mitigation approaches have a negative effect on NRE. Our analysis lays groundwork for future quantifying and mitigating bias in NRE.

pdf
On the Robustness of Language Encoders against Grammatical Errors
Fan Yin | Quanyu Long | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We conduct a thorough study to diagnose the behaviors of pre-trained language encoders (ELMo, BERT, and RoBERTa) when confronted with natural grammatical errors. Specifically, we collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data. We use this approach to facilitate debugging models on downstream applications. Results confirm that the performance of all tested models is affected but the degree of impact varies. To interpret model behaviors, we further design a linguistic acceptability task to reveal their abilities in identifying ungrammatical sentences and the position of errors. We find that fixed contextual encoders with a simple classifier trained on the prediction of sentence correctness are able to locate error positions. We also design a cloze test for BERT and discover that BERT captures the interaction between errors and specific tokens in context. Our results shed light on understanding the robustness and behaviors of language encoders against grammatical errors.

pdf
SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics
Da Yin | Tao Meng | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose SentiBERT, a variant of BERT that effectively captures compositional sentiment semantics. The model incorporates contextualized representation with binary constituency parse tree to capture semantic composition. Comprehensive experiments demonstrate that SentiBERT achieves competitive performance on phrase-level sentiment classification. We further demonstrate that the sentiment composition learned from the phrase-level annotations on SST can be transferred to other sentiment analysis tasks as well as related tasks, such as emotion classification tasks. Moreover, we conduct ablation studies and design visualization methods to understand SentiBERT. We show that SentiBERT is better than baseline approaches in capturing negation and the contrastive relation and model the compositional sentiment semantics.

pdf
A Transformer-based Approach for Source Code Summarization
Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating a readable summary that describes the functionality of a program is known as source code summarization. In this task, learning code representation by modeling the pairwise relationship between code tokens to capture their long-range dependencies is crucial. To learn code representation for summarization, we explore the Transformer model that uses a self-attention mechanism and has shown to be effective in capturing long-range dependencies. In this work, we show that despite the approach is simple, it outperforms the state-of-the-art techniques by a significant margin. We perform extensive analysis and ablation studies that reveal several important findings, e.g., the absolute encoding of source code tokens’ position hinders, while relative encoding significantly improves the summarization performance. We have made our code publicly available to facilitate future research.

pdf
What Does BERT with Vision Look At?
Liunian Harold Li | Mark Yatskar | Da Yin | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Pre-trained visually grounded language models such as ViLBERT, LXMERT, and UNITER have achieved significant performance improvement on vision-and-language tasks but what they learn during pre-training remains unclear. In this work, we demonstrate that certain attention heads of a visually grounded language model actively ground elements of language to image regions. Specifically, some heads can map entities to image regions, performing the task known as entity grounding. Some heads can even detect the syntactic relations between non-entity words and image regions, tracking, for example, associations between verbs and regions corresponding to their arguments. We denote this ability as syntactic grounding. We verify grounding both quantitatively and qualitatively, using Flickr30K Entities as a testbed.

pdf
LOGAN: Local Group Bias Detection by Clustering
Jieyu Zhao | Kai-Wei Chang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Machine learning techniques have been widely used in natural language processing (NLP). However, as revealed by many recent studies, machine learning models often inherit and amplify the societal biases in data. Various metrics have been proposed to quantify biases in model predictions. In particular, several of them evaluate disparity in model performance between protected groups and advantaged groups in the test corpus. However, we argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model. In fact, a model with similar aggregated performance between different groups on the entire data may behave differently on instances in a local region. To analyze and detect such local bias, we propose LOGAN, a new bias detection technique based on clustering. Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region and allows us to better analyze the biases in model predictions.

2019

pdf
Mitigating Gender Bias in Natural Language Processing: Literature Review
Tony Sun | Andrew Gaut | Shirlyn Tang | Yuxin Huang | Mai ElSherief | Jieyu Zhao | Diba Mirza | Elizabeth Belding | Kai-Wei Chang | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

As Natural Language Processing (NLP) and Machine Learning (ML) tools rise in popularity, it becomes increasingly vital to recognize the role they play in shaping societal biases and stereotypes. Although NLP models have shown success in modeling various applications, they propagate and may even amplify gender bias found in text corpora. While the study of bias in artificial intelligence is not new, methods to mitigate gender bias in NLP are relatively nascent. In this paper, we review contemporary studies on recognizing and mitigating gender bias in NLP. We discuss gender bias based on four forms of representation bias and analyze methods recognizing gender bias. Furthermore, we discuss the advantages and drawbacks of existing gender debiasing methods. Finally, we discuss future studies for recognizing and mitigating gender bias in NLP.

pdf
Few-Shot Representation Learning for Out-Of-Vocabulary Words
Ziniu Hu | Ting Chen | Kai-Wei Chang | Yizhou Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Existing approaches for learning word embedding often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. How to learn accurate representations of these words to augment a pre-trained embedding by only a few observations is a challenging research problem. In this paper, we formulate the learning of OOV embedding as a few-shot regression problem by fitting a representation function to predict an oracle embedding vector (defined as embedding trained with abundant observations) based on limited contexts. Specifically, we propose a novel hierarchical attention network-based embedding framework to serve as the neural regression function, in which the context information of a word is encoded and aggregated from K observations. Furthermore, we propose to use Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing an accurate embedding for OOV words and improves downstream tasks when the embedding is utilized.

pdf
Gender Bias in Contextualized Word Embeddings
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Ryan Cotterell | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In this paper, we quantify, analyze and mitigate gender bias exhibited in ELMo’s contextualized word vectors. First, we conduct several intrinsic analyses and find that (1) training data for ELMo contains significantly more male than female entities, (2) the trained ELMo embeddings systematically encode gender information and (3) ELMo unequally encodes gender information about male and female entities. Then, we show that a state-of-the-art coreference system that depends on ELMo inherits its bias and demonstrates significant bias on the WinoBias probing corpus. Finally, we explore two methods to mitigate such gender bias and show that the bias demonstrated on WinoBias can be eliminated.

pdf
On Difficulties of Cross-Lingual Transfer with Order Differences: A Case Study on Dependency Parsing
Wasi Ahmad | Zhisong Zhang | Xuezhe Ma | Eduard Hovy | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Different languages might have different word orders. In this paper, we investigate crosslingual transfer and posit that an orderagnostic model will perform better when transferring to distant foreign languages. To test our hypothesis, we train dependency parsers on an English corpus and evaluate their transfer performance on 30 other languages. Specifically, we compare encoders and decoders based on Recurrent Neural Networks (RNNs) and modified self-attentive architectures. The former relies on sequential information while the latter is more flexible at modeling word order. Rigorous experiments and detailed analysis shows that RNN-based architectures transfer well to languages that are close to English, while self-attentive models have better overall cross-lingual transferability and perform especially well on distant languages.

pdf
Learning to Represent Bilingual Dictionaries
Muhao Chen | Yingtao Tian | Haochen Chen | Kai-Wei Chang | Steven Skiena | Carlo Zaniolo
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Bilingual word embeddings have been widely used to capture the correspondence of lexical semantics in different human languages. However, the cross-lingual correspondence between sentences and words is less studied, despite that this correspondence can significantly benefit many applications such as crosslingual semantic search and textual inference. To bridge this gap, we propose a neural embedding model that leverages bilingual dictionaries. The proposed model is trained to map the lexical definitions to the cross-lingual target words, for which we explore with different sentence encoding techniques. To enhance the learning process on limited resources, our model adopts several critical learning strategies, including multi-task learning on different bridges of languages, and joint learning of the dictionary model with a bilingual word embedding model. We conduct experiments on two new tasks. In the cross-lingual reverse dictionary retrieval task, we demonstrate that our model is capable of comprehending bilingual concepts based on descriptions, and the proposed learning strategies are effective. In the bilingual paraphrase identification task, we show that our model effectively associates sentences in different languages via a shared embedding space, and outperforms existing approaches in identifying bilingual paraphrases.

pdf
Cross-Lingual Dependency Parsing with Unlabeled Auxiliary Languages
Wasi Uddin Ahmad | Zhisong Zhang | Xuezhe Ma | Kai-Wei Chang | Nanyun Peng
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Cross-lingual transfer learning has become an important weapon to battle the unavailability of annotated resources for low-resource languages. One of the fundamental techniques to transfer across languages is learning language-agnostic representations, in the form of word embeddings or contextual encodings. In this work, we propose to leverage unannotated sentences from auxiliary languages to help learning language-agnostic representations. Specifically, we explore adversarial training for learning contextual encoders that produce invariant representations across languages to facilitate cross-lingual transfer. We conduct experiments on cross-lingual dependency parsing where we train a dependency parser on a source language and transfer it to a wide range of target languages. Experiments on 28 target languages demonstrate that adversarial training significantly improves the overall transfer performances under several different settings. We conduct a careful analysis to evaluate the language-agnostic representations resulted from adversarial training.

pdf
Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing
Tao Meng | Nanyun Peng | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Prior work on cross-lingual dependency parsing often focuses on capturing the commonalities between source and target languages and overlook the potential to leverage the linguistic properties of the target languages to facilitate the transfer. In this paper, we show that weak supervisions of linguistic knowledge for the target languages can improve a cross-lingual graph-based dependency parser substantially. Specifically, we explore several types of corpus linguistic statistics and compile them into corpus-statistics constraints to facilitate the inference procedure. We propose new algorithms that adapt two techniques, Lagrangian relaxation and posterior regularization, to conduct inference with corpus-statistics constraints. Experiments show that the Lagrangian relaxation and posterior regularization techniques improve the performances on 15 and 17 out of 19 target languages, respectively. The improvements are especially large for the target languages that have different word order features from the source language.

pdf
Robust Text Classifier on Test-Time Budgets
Md Rizwan Parvez | Tolga Bolukbasi | Kai-Wei Chang | Venkatesh Saligrama
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We design a generic framework for learning a robust text classification model that achieves high accuracy under different selection budgets (a.k.a selection rates) at test-time. We take a different approach from existing methods and learn to dynamically filter a large fraction of unimportant words by a low-complexity selector such that any high-complexity state-of-art classifier only needs to process a small fraction of text, relevant for the target task. To this end, we propose a data aggregation method to train the classifier, allowing it to achieve competitive performance on fractured sentences. On four benchmark text classification tasks, we demonstrate that the framework gains consistent speedup with little degradation in accuracy on various selection budgets.

pdf
Retrofitting Contextualized Word Embeddings with Paraphrases
Weijia Shi | Muhao Chen | Pei Zhou | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Contextualized word embeddings, such as ELMo, provide meaningful representations for words and their contexts. They have been shown to have a great impact on downstream applications. However, we observe that the contextualized embeddings of a word might change drastically when its contexts are paraphrased. As these embeddings are over-sensitive to the context, the downstream model may make different predictions when the input sentence is paraphrased. To address this issue, we propose a post-processing approach to retrofit the embedding with paraphrases. Our method learns an orthogonal transformation on the input space of the contextualized word embedding model, which seeks to minimize the variance of word representations on paraphrased contexts. Experiments show that the proposed method significantly improves ELMo on various sentence classification and inference tasks.

pdf
The Woman Worked as a Babysitter: On Biases in Language Generation
Emily Sheng | Kai-Wei Chang | Premkumar Natarajan | Nanyun Peng
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We present a systematic study of biases in natural language generation (NLG) by analyzing text generated from prompts that contain mentions of different demographic groups. In this work, we introduce the notion of the regard towards a demographic, use the varying levels of regard towards different demographics as a defining metric for bias in NLG, and analyze the extent to which sentiment scores are a relevant proxy metric for regard. To this end, we collect strategically-generated text from language models and manually annotate the text with both sentiment and regard scores. Additionally, we build an automatic regard classifier through transfer learning, so that we can analyze biases in unseen text. Together, these methods reveal the extent of the biased nature of language model generations. Our analysis provides a study of biases in NLG, bias metrics and correlated human judgments, and empirical evidence on the usefulness of our annotated dataset.

pdf
Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification
Yichao Zhou | Jyun-Yu Jiang | Kai-Wei Chang | Wei Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Adversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to discriminate perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.

pdf
Examining Gender Bias in Languages with Grammatical Gender
Pei Zhou | Weijia Shi | Jieyu Zhao | Kuan-Hao Huang | Muhao Chen | Ryan Cotterell | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent studies have shown that word embeddings exhibit gender bias inherited from the training corpora. However, most studies to date have focused on quantifying and mitigating such bias only in English. These analyses cannot be directly extended to languages that exhibit morphological agreement on gender, such as Spanish and French. In this paper, we propose new metrics for evaluating gender bias in word embeddings of these languages and further demonstrate evidence of gender bias in bilingual embeddings which align these languages with English. Finally, we extend an existing approach to mitigate gender bias in word embedding of these languages under both monolingual and bilingual settings. Experiments on modified Word Embedding Association Test, word similarity, word translation, and word pair translation tasks show that the proposed approaches can effectively reduce the gender bias while preserving the utility of the original embeddings.


Bias and Fairness in Natural Language Processing
Kai-Wei Chang | Vinodkumar Prabhakaran | Vicente Ordonez
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

Recent advances in data-driven machine learning techniques (e.g., deep neural networks) have revolutionized many natural language processing applications. These approaches automatically learn how to make decisions based on the statistics and diagnostic information from large amounts of training data. Despite the remarkable accuracy of machine learning in various applications, learning algorithms run the risk of relying on societal biases encoded in the training data to make predictions. This often occurs even when gender and ethnicity information is not explicitly provided to the system because learning algorithms are able to discover implicit associations between individuals and their demographic information based on other variables such as names, titles, home addresses, etc. Therefore, machine learning algorithms risk potentially encouraging unfair and discriminatory decision making and raise serious privacy concerns. Without properly quantifying and reducing the reliance on such correlations, broad adoption of these models might have the undesirable effect of magnifying harmful stereotypes or implicit biases that rely on sensitive demographic attributes.In this tutorial, we will review the history of bias and fairness studies in machine learning and language processing and present recent community effort in quantifying and mitigating bias in natural language processing models for a wide spectrum of tasks, including word embeddings, co-reference resolution, machine translation, and vision-and-language tasks. In particular, we will focus on the following topics:+ Definitions of fairness and bias.+ Data, algorithms, and models that propagate and even amplify social bias to NLP applications and metrics to quantify these biases.+ Algorithmic solutions; learning objective; design principles to prevent social bias in NLP systems and their potential drawbacks.The tutorial will bring researchers and practitioners to be aware of this issue, and encourage the research community to propose innovative solutions to promote fairness in NLP.

pdf
Visualizing Trends of Key Roles in News Articles
Chen Xia | Haoxiang Zhang | Jacob Moghtader | Allen Wu | Kai-Wei Chang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

There are tons of news generated every day reflecting the change of key roles such as people, organizations and political parties. Analyzing the trend of these key roles can help understand the information flow in a more effective way. In this paper, we present a demonstration system that visualizes the news trend of key roles based on natural language processing techniques. Specifically, we apply semantic role labelling to understand relationships between key roles in the news. We also train a dynamic word embedding model to align representations of words in different time periods to measure how the similarities between a key role and news topics change over time. Note: The github link to our demo jupyter notebook and screencast video is https://github.com/kasinxc/Visualizing-Trend-of-Key-Roles-in-News-Articles

pdf
Efficient Contextual Representation Learning With Continuous Outputs
Liunian Harold Li | Patrick H. Chen | Cho-Jui Hsieh | Kai-Wei Chang
Transactions of the Association for Computational Linguistics, Volume 7

Contextual representation models have achieved great success in improving various downstream natural language processing tasks. However, these language-model-based encoders are difficult to train due to their large parameter size and high computational complexity. By carefully examining the training procedure, we observe that the softmax layer, which predicts a distribution of the target word, often induces significant overhead, especially when the vocabulary size is large. Therefore, we revisit the design of the output layer and consider directly predicting the pre-trained embedding of the target word for a given context. When applied to ELMo, the proposed approach achieves a 4-fold speedup and eliminates 80% trainable parameters while achieving competitive performance on downstream tasks. Further analysis shows that the approach maintains the speed advantage under various settings, even when the sentence encoder is scaled up.

pdf
Learning Bilingual Word Embeddings Using Lexical Definitions
Weijia Shi | Muhao Chen | Yingtao Tian | Kai-Wei Chang
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)

Bilingual word embeddings, which represent lexicons of different languages in a shared embedding space, are essential for supporting semantic and knowledge transfers in a variety of cross-lingual NLP tasks. Existing approaches to training bilingual word embeddings require either large collections of pre-defined seed lexicons that are expensive to obtain, or parallel sentences that comprise coarse and noisy alignment. In contrast, we propose BiLex that leverages publicly available lexical definitions for bilingual word embedding learning. Without the need of predefined seed lexicons, BiLex comprises a novel word pairing strategy to automatically identify and propagate the precise fine-grain word alignment from lexical definitions. We evaluate BiLex in word-level and sentence-level translation tasks, which seek to find the cross-lingual counterparts of words and sentences respectively. BiLex significantly outperforms previous embedding methods on both tasks.

2018

pdf
Building Language Models for Text with Named Entities
Md Rizwan Parvez | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text in many domains involves a significant amount of named entities. Predicting the entity names is often challenging for a language model as they appear less frequent on the training corpus. In this paper, we propose a novel and effective approach to building a language model which can learn the entity names by leveraging their entity type information. We also introduce two benchmark datasets based on recipes and Java programming codes, on which we evaluate the proposed model. Experimental results show that our model achieves 52.2% better perplexity in recipe generation and 22.06% on code generation than state-of-the-art language models.

pdf
Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang | Hsiang-Fu Yu | Cho-Jui Hsieh | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Word embedding is a key component in many downstream applications in processing natural languages. Existing approaches often assume the existence of a large collection of text for learning effective word embedding. However, such a corpus may not be available for some low-resource languages. In this paper, we study how to effectively learn a word embedding model on a corpus with only a few million tokens. In such a situation, the co-occurrence matrix is sparse as the co-occurrences of many word pairs are unobserved. In contrast to existing approaches often only sample a few unobserved word pairs as negative samples, we argue that the zero entries in the co-occurrence matrix also provide valuable information. We then design a Positive-Unlabeled Learning (PU-Learning) approach to factorize the co-occurrence matrix and validate the proposed approaches in four different languages.

pdf
Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

In this paper, we introduce a new benchmark for co-reference resolution focused on gender bias, WinoBias. Our corpus contains Winograd-schema style sentences with entities corresponding to people referred by their occupation (e.g. the nurse, the doctor, the carpenter). We demonstrate that a rule-based, a feature-rich, and a neural coreference system all link gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities, by an average difference of 21.1 in F1 score. Finally, we demonstrate a data-augmentation approach that, in combination with existing word-embedding debiasing techniques, removes the bias demonstrated by these systems in WinoBias without significantly affecting their performance on existing datasets.

pdf
A Corpus to Learn Refer-to-as Relations for Nominals
Wasi Ahmad | Kai-Wei Chang
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
A Corpus of Drug Usage Guidelines Annotated with Type of Advice
Sarah Masud Preum | Md. Rizwan Parvez | Kai-Wei Chang | John Stankovic
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf
Generating Natural Language Adversarial Examples
Moustafa Alzantot | Yash Sharma | Ahmed Elgohary | Bo-Jhang Ho | Mani Srivastava | Kai-Wei Chang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Deep neural networks (DNNs) are vulnerable to adversarial examples, perturbations to correctly classified examples which can cause the model to misclassify. In the image domain, these perturbations can often be made virtually indistinguishable to human perception, causing humans and state-of-the-art models to disagree. However, in the natural language domain, small perturbations are clearly perceptible, and the replacement of a single word can drastically alter the semantics of the document. Given these challenges, we use a black-box population-based optimization algorithm to generate semantically and syntactically similar adversarial examples that fool well-trained sentiment analysis and textual entailment models with success rates of 97% and 70%, respectively. We additionally demonstrate that 92.3% of the successful sentiment analysis adversarial examples are classified to their original label by 20 human annotators, and that the examples are perceptibly quite similar. Finally, we discuss an attempt to use adversarial training as a defense, but fail to yield improvement, demonstrating the strength and diversity of our adversarial examples. We hope our findings encourage researchers to pursue improving the robustness of DNNs in the natural language domain.

pdf
Learning Gender-Neutral Word Embeddings
Jieyu Zhao | Yichao Zhou | Zeyu Li | Wei Wang | Kai-Wei Chang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that reflect social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model.

2017

pdf
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
Shyam Upadhyay | Kai-Wei Chang | Matt Taddy | Adam Kalai | James Zou
Proceedings of the 2nd Workshop on Representation Learning for NLP

Word embeddings, which represent a word as a point in a vector space, have become ubiquitous to several NLP tasks. A recent line of work uses bilingual (two languages) corpora to learn a different vector for each sense of a word, by exploiting crosslingual signals to aid sense identification. We present a multi-view Bayesian non-parametric algorithm which improves multi-sense wor d embeddings by (a) using multilingual (i.e., more than two languages) corpora to significantly improve sense embeddings beyond what one achieves with bilingual information, and (b) uses a principled approach to learn a variable number of senses per word, in a data-driven manner. Ours is the first approach with the ability to leverage multilingual corpora efficiently for multi-sense representation learning. Experiments show that multilingual training significantly improves performance over monolingual and bilingual training, by allowing us to combine different parallel corpora to leverage multilingual context. Multilingual training yields comparable performance to a state of the art monolingual model trained on five times more training data.

pdf bib
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing
Kai-Wei Chang | Ming-Wei Chang | Vivek Srikumar | Alexander M. Rush
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing

pdf
Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
Jieyu Zhao | Tianlu Wang | Mark Yatskar | Vicente Ordonez | Kai-Wei Chang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Language is increasingly being used to de-fine rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively。

pdf
Counterfactual Language Model Adaptation for Suggesting Phrases
Kenneth Arnold | Kai-Wei Chang | Adam Kalai
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Mobile devices use language models to suggest words and phrases for use in text entry. Traditional language models are based on contextual word frequency in a static corpus of text. However, certain types of phrases, when offered to writers as suggestions, may be systematically chosen more often than their frequency would predict. In this paper, we propose the task of generating suggestions that writers accept, a related but distinct task to making accurate predictions. Although this task is fundamentally interactive, we propose a counterfactual setting that permits offline training and evaluation. We find that even a simple language model can capture text characteristics that improve acceptability.

2016

pdf bib
Proceedings of the Workshop on Structured Prediction for NLP
Kai-Wei Chang | Ming-Wei Chang | Alexander Rush | Vivek Srikumar
Proceedings of the Workshop on Structured Prediction for NLP

pdf
Learning from Explicit and Implicit Supervision Jointly For Algebra Word Problems
Shyam Upadhyay | Ming-Wei Chang | Kai-Wei Chang | Wen-tau Yih
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2015

pdf bib
Hands-on Learning to Search for Structured Prediction
Hal Daumé III | John Langford | Kai-Wei Chang | He He | Sudha Rao
Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Tutorial Abstracts

pdf bib
A Joint Framework for Coreference Resolution and Mention Head Detection
Haoruo Peng | Kai-Wei Chang | Dan Roth
Proceedings of the Nineteenth Conference on Computational Natural Language Learning

2014

pdf
Typed Tensor Decomposition of Knowledge Bases for Relation Extraction
Kai-Wei Chang | Wen-tau Yih | Bishan Yang | Christopher Meek
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf
The Illinois-Columbia System in the CoNLL-2014 Shared Task
Alla Rozovskaya | Kai-Wei Chang | Mark Sammons | Dan Roth | Nizar Habash
Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task

2013

pdf
A Constrained Latent Variable Model for Coreference Resolution
Kai-Wei Chang | Rajhans Samdani | Dan Roth
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf
Multi-Relational Latent Semantic Analysis
Kai-Wei Chang | Wen-tau Yih | Christopher Meek
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
The University of Illinois System in the CoNLL-2013 Shared Task
Alla Rozovskaya | Kai-Wei Chang | Mark Sammons | Dan Roth
Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task

2012

pdf
Illinois-Coref: The UI System in the CoNLL-2012 Shared Task
Kai-Wei Chang | Rajhans Samdani | Alla Rozovskaya | Mark Sammons | Dan Roth
Joint Conference on EMNLP and CoNLL - Shared Task

2011

pdf
Inference Protocols for Coreference Resolution
Kai-Wei Chang | Rajhans Samdani | Alla Rozovskaya | Nick Rizzolo | Mark Sammons | Dan Roth
Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task

2009

pdf
Iterative Scaling and Coordinate Descent Methods for Maximum Entropy
Fang-Lan Huang | Cho-Jui Hsieh | Kai-Wei Chang | Chih-Jen Lin
Proceedings of the ACL-IJCNLP 2009 Conference Short Papers

Search
Co-authors