Junzhuo Li


2023

pdf
DEPN: Detecting and Editing Privacy Neurons in Pretrained Language Models
Xinwei Wu | Junzhuo Li | Minghui Xu | Weilong Dong | Shuangzhi Wu | Chao Bian | Deyi Xiong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Pretrained language models have learned a vast amount of human knowledge from large-scale corpora, but their powerful memorization capability also brings the risk of data leakage. Some risks may only be discovered after the model training is completed, such as the model memorizing a specific phone number and frequently outputting it. In such cases, model developers need to eliminate specific data influences from the model to mitigate legal and ethical penalties. To effectively mitigate these risks, people often have to spend a significant amount of time and computational costs to retrain new models instead of finding ways to cure the ‘sick’ models. Therefore, we propose a method to locate and erase risky neurons in order to eliminate the impact of privacy data in the model. We use a new method based on integrated gradients to locate neurons associated with privacy texts, and then erase these neurons by setting their activation values to zero.Furthermore, we propose a risky neuron aggregation method to eliminate the influence of privacy data in the model in batches. Experimental results show that our method can effectively and quickly eliminate the impact of privacy data without affecting the model’s performance. Additionally, we demonstrate the relationship between model memorization and neurons through experiments, further illustrating the robustness of our method.

pdf
Language Representation Projection: Can We Transfer Factual Knowledge across Languages in Multilingual Language Models?
Shaoyang Xu | Junzhuo Li | Deyi Xiong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Multilingual pretrained language models serve as repositories of multilingual factual knowledge. Nevertheless, a substantial performance gap of factual knowledge probing exists between high-resource languages and low-resource languages, suggesting limited implicit factual knowledge transfer across languages in multilingual pretrained language models. This paper investigates the feasibility of explicitly transferring relatively rich factual knowledge from English to non-English languages. To accomplish this, we propose two parameter-free Language Representation Projection modules (LRP2). The first module converts non-English representations into English-like equivalents, while the second module reverts English-like representations back into representations of the corresponding non-English language. Experimental results on the mLAMA dataset demonstrate that LRP2 significantly improves factual knowledge retrieval accuracy and facilitates knowledge transferability across diverse non-English languages. We further investigate the working mechanism of LRP2 from the perspectives of representation space and cross-lingual knowledge neuron.

pdf
Tab-CQA: A Tabular Conversational Question Answering Dataset on Financial Reports
Chuang Liu | Junzhuo Li | Deyi Xiong
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Existing conversational question answering (CQA) datasets have been usually constructed from unstructured texts in English. In this paper, we propose Tab-CQA, a tabular CQA dataset created from Chinese financial reports that are extracted from listed companies in a wide range of different sectors in the past 30 years. From these reports, we select 2,463 tables, and manually generate 2,463 conversations with 35,494 QA pairs. Additionally, we select 4,578 tables, from which 4,578 conversations with 73,595 QA pairs are automatically created via a template-based method. With the manually- and automatically-generated conversations, Tab-CQA contains answerable and unanswerable questions. For the answerable questions, we further diversify them to cover a wide range of skills, e.g., table retrieval, fact checking, numerical reasoning, so as to accommodate real-world scenarios. We further propose two different tabular CQA models, a text-based model and an operation-based model, and evaluate them on Tab-CQA. Experiment results show that Tab-CQA is a very challenging dataset, where a huge performance gap exists between human and neural models. We will publicly release Tab-CQA as a benchmark testbed to promote further research on Chinese tabular CQA.

2022

pdf
KaFSP: Knowledge-Aware Fuzzy Semantic Parsing for Conversational Question Answering over a Large-Scale Knowledge Base
Junzhuo Li | Deyi Xiong
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we study two issues of semantic parsing approaches to conversational question answering over a large-scale knowledge base: (1) The actions defined in grammar are not sufficient to handle uncertain reasoning common in real-world scenarios. (2) Knowledge base information is not well exploited and incorporated into semantic parsing. To mitigate the two issues, we propose a knowledge-aware fuzzy semantic parsing framework (KaFSP). It defines fuzzy comparison operations in the grammar system for uncertain reasoning based on the fuzzy set theory. In order to enhance the interaction between semantic parsing and knowledge base, we incorporate entity triples from the knowledge base into a knowledge-aware entity disambiguation module. Additionally, we propose a multi-label classification framework to not only capture correlations between entity types and relations but also detect knowledge base information relevant to the current utterance. Both enhancements are based on pre-trained language models. Experiments on a large-scale conversational question answering benchmark demonstrate that the proposed KaFSP achieves significant improvements over previous state-of-the-art models, setting new SOTA results on 8 out of 10 question types, gaining improvements of over 10% F1 or accuracy on 3 question types, and improving overall F1 from 83.01% to 85.33%. The source code of KaFSP is available at https://github.com/tjunlp-lab/KaFSP.