This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Many approaches to Natural Language Processing tasks often treat them as single-step problems, where an agent receives an instruction, executes it, and is evaluated based on the final outcome. However, language is inherently interactive, as evidenced by the back-and-forth nature of human conversations. In light of this, we posit that human-AI collaboration should also be interactive, with humans monitoring the work of AI agents and providing feedback that the agent can understand and utilize. Further, the AI agent should be able to detect when it needs additional information and proactively ask for help. Enabling this scenario would lead to more natural, efficient, and engaging human-AI collaboration.In this paper, we investigate these directions using the challenging task established by the IGLU competition, an interactive grounded language understanding task in a MineCraft-like world. We delve into multiple types of help players can give to the AI to guide it and analyze the impact of this help on behavior, resulting in performance improvements and an end-to-end interactive system.
The recent increase in the volume of online meetings necessitates automated tools for organizing the material, especially when an attendee has missed the discussion and needs assistance in quickly exploring it. In this work, we propose a novel end-to-end framework for generating interactive questionnaires for preference-based meeting exploration. As a result, users are supplied with a list of suggested questions reflecting their preferences. Since the task is new, we introduce an automatic evaluation strategy by measuring how much the generated questions via questionnaire are answerable to ensure factual correctness and covers the source meeting for the depth of possible exploration.
Automatic text summarization has enjoyed great progress over the years and is used in numerous applications, impacting the lives of many. Despite this development, there is little research that meaningfully investigates how the current research focus in automatic summarization aligns with users’ needs. To bridge this gap, we propose a survey methodology that can be used to investigate the needs of users of automatically generated summaries. Importantly, these needs are dependent on the target group. Hence, we design our survey in such a way that it can be easily adjusted to investigate different user groups. In this work we focus on university students, who make extensive use of summaries during their studies. We find that the current research directions of the automatic summarization community do not fully align with students’ needs. Motivated by our findings, we present ways to mitigate this mismatch in future research on automatic summarization: we propose research directions that impact the design, the development and the evaluation of automatically generated summaries.
People rely on digital task management tools, such as email or to-do apps, to manage their tasks. Some of these tasks are large and complex, leading to action paralysis and feelings of being overwhelmed on the part of the user. The micro-productivity literature has shown that such tasks could benefit from being decomposed and organized, in order to reduce user cognitive load. Thus in this paper, we propose a novel end-to-end pipeline that consumes a complex task and induces a dependency graph from unstructured text to represent sub-tasks and their relationships. Our solution first finds nodes for sub-tasks from multiple ‘how-to’ articles on the web by injecting a neural text generator with three key desiderata – relevance, abstraction, and consensus. Then we resolve and infer edges between these subtask nodes by learning task dependency relations. We collect a new dataset of complex tasks with their sub-task graph to develop and evaluate our solutions. Both components of our graph induction solution are evaluated in experiments, demonstrating that our models outperform a state-of-the-art text generator significantly. Our generalizable and scalable end-to-end solution has important implications for boosting user productivity and assisting with digital task management.
Enabling open-domain dialogue systems to ask clarifying questions when appropriate is an important direction for improving the quality of the system response. Namely, for cases when a user request is not specific enough for a conversation system to provide an answer right away, it is desirable to ask a clarifying question to increase the chances of retrieving a satisfying answer. To address the problem of ‘asking clarifying questions in open-domain dialogues’: (1) we collect and release a new dataset focused on open-domain single- and multi-turn conversations, (2) we benchmark several state-of-the-art neural baselines, and (3) we propose a pipeline consisting of offline and online steps for evaluating the quality of clarifying questions in various dialogues. These contributions are suitable as a foundation for further research.
Reinforcement learning methods have emerged as a popular choice for training an efficient and effective dialogue policy. However, these methods suffer from sparse and unstable reward signals returned by a user simulator only when a dialogue finishes. Besides, the reward signal is manually designed by human experts, which requires domain knowledge. Recently, a number of adversarial learning methods have been proposed to learn the reward function together with the dialogue policy. However, to alternatively update the dialogue policy and the reward model on the fly, we are limited to policy-gradient-based algorithms, such as REINFORCE and PPO. Moreover, the alternating training of a dialogue agent and the reward model can easily get stuck in local optima or result in mode collapse. To overcome the listed issues, we propose to decompose the adversarial training into two steps. First, we train the discriminator with an auxiliary dialogue generator and then incorporate a derived reward model into a common reinforcement learning method to guide the dialogue policy learning. This approach is applicable to both on-policy and off-policy reinforcement learning methods. Based on our extensive experimentation, we can conclude the proposed method: (1) achieves a remarkable task success rate using both on-policy and off-policy reinforcement learning methods; and (2) has potential to transfer knowledge from existing domains to a new domain.
Dialogue policy learning for task-oriented dialogue systems has enjoyed great progress recently mostly through employing reinforcement learning methods. However, these approaches have become very sophisticated. It is time to re-evaluate it. Are we really making progress developing dialogue agents only based on reinforcement learning? We demonstrate how (1) traditional supervised learning together with (2) a simulator-free adversarial learning method can be used to achieve performance comparable to state-of-the-art reinforcement learning-based methods. First, we introduce a simple dialogue action decoder to predict the appropriate actions. Then, the traditional multi-label classification solution for dialogue policy learning is extended by adding dense layers to improve the dialogue agent performance. Finally, we employ the Gumbel-Softmax estimator to alternatively train the dialogue agent and the dialogue reward model without using reinforcement learning. Based on our extensive experimentation, we can conclude the proposed methods can achieve more stable and higher performance with fewer efforts, such as the domain knowledge required to design a user simulator and the intractable parameter tuning in reinforcement learning. Our main goal is not to beat RL with supervised learning, but to demonstrate the value of rethinking the role of reinforcement learning and supervised learning in optimizing task-oriented dialogue systems.