Joel Hestness


2024

pdf
MediSwift: Efficient Sparse Pre-trained Biomedical Language Models
Vithursan Thangarasa | Mahmoud Salem | Shreyas Saxena | Chen-Yu Leong | Joel Hestness | Sean Lie
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs) are typically trained on general source data forvarious domains, but a recent surge in domain-specific LLMs has shown theirpotential to outperform general-purpose models in domain-specific tasks (e.g.,biomedicine). Although domain-specific pre-training enhances efficiency andleads to smaller models, the computational costs of training these LLMs remainhigh, posing budgeting challenges. We introduce MediSwift, a suite of biomedicalLMs that leverage sparse pre-training on domain-specific biomedical text data.By inducing up to 75% weight sparsity during the pre-training phase, MediSwiftachieves a 2-2.5x reduction in training FLOPs. Notably, all sparse pre-trainingwas performed on the Cerebras CS-2 system, which is specifically designed torealize the acceleration benefits from unstructured weight sparsity, therebysignificantly enhancing the efficiency of the MediSwift models. Throughsubsequent dense fine-tuning and strategic soft prompting, MediSwift modelsoutperform existing LLMs up to 7B parameters on biomedical tasks, setting newbenchmarks w.r.t efficiency-accuracy on tasks such as PubMedQA. Our results showthat sparse pre-training, along with dense fine-tuning and soft prompting,offers an effective method for creating high-performing, computationallyefficient models in specialized domains.

2019

pdf
Compositional Generalization for Primitive Substitutions
Yuanpeng Li | Liang Zhao | Jianyu Wang | Joel Hestness
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Compositional generalization is a basic mechanism in human language learning, but current neural networks lack such ability. In this paper, we conduct fundamental research for encoding compositionality in neural networks. Conventional methods use a single representation for the input sentence, making it hard to apply prior knowledge of compositionality. In contrast, our approach leverages such knowledge with two representations, one generating attention maps, and the other mapping attended input words to output symbols. We reduce the entropy in each representation to improve generalization. Our experiments demonstrate significant improvements over the conventional methods in five NLP tasks including instruction learning and machine translation. In the SCAN domain, it boosts accuracies from 14.0% to 98.8% in Jump task, and from 92.0% to 99.7% in TurnLeft task. It also beats human performance on a few-shot learning task. We hope the proposed approach can help ease future research towards human-level compositional language learning.