Jisoo Mok


2024

pdf
LLM-based Frameworks for API Argument Filling in Task-Oriented Conversational Systems
Jisoo Mok | Mohammad Kachuee | Shuyang Dai | Shayan Ray | Tara Taghavi | Sungroh Yoon
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Task-orientated conversational agents interact with users and assist them via leveraging external APIs. A typical task-oriented conversational system can be broken down into three phases: external API selection, argument filling, and response generation. The focus of our work is the task of argument filling, which is in charge of accurately providing arguments required by the selected API. Upon comprehending the dialogue history and the pre-defined API schema, the argument filling task is expected to provide the external API with the necessary information to generate a desirable agent action. In this paper, we study the application of Large Language Models (LLMs) for the problem of API argument filling task. Our initial investigation reveals that LLMs require an additional grounding process to successfully perform argument filling, inspiring us to design training and prompting frameworks to ground their responses. Our experimental results demonstrate that when paired with proposed techniques, the argument filling performance of LLMs noticeably improves, paving a new way toward building an automated argument filling framework.

2023

pdf
Large-scale Lifelong Learning of In-context Instructions and How to Tackle It
Jisoo Mok | Jaeyoung Do | Sungjin Lee | Tara Taghavi | Seunghak Yu | Sungroh Yoon
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Jointly fine-tuning a Pre-trained Language Model (PLM) on a pre-defined set of tasks with in-context instructions has been proven to improve its generalization performance, allowing us to build a universal language model that can be deployed across task boundaries. In this work, we explore for the first time whether this attractive property of in-context instruction learning can be extended to a scenario in which tasks are fed to the target PLM in a sequential manner. The primary objective of so-called lifelong in-context instruction learning is to improve the target PLM’s instance- and task-level generalization performance as it observes more tasks. DynaInst, the proposed method to lifelong in-context instruction learning, achieves noticeable improvements in both types of generalization, nearly reaching the upper bound performance obtained through joint training.