Jinglin Liu


2023

pdf
RMSSinger: Realistic-Music-Score based Singing Voice Synthesis
Jinzheng He | Jinglin Liu | Zhenhui Ye | Rongjie Huang | Chenye Cui | Huadai Liu | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023

We are interested in a challenging task, Realistic-Music-Score based Singing Voice Synthesis (RMS-SVS). RMS-SVS aims to generate high-quality singing voices given realistic music scores with different note types (grace, slur, rest, etc.). Though significant progress has been achieved, recent singing voice synthesis (SVS) methods are limited to fine-grained music scores, which require a complicated data collection pipeline with time-consuming manual annotation to align music notes with phonemes. % Furthermore, existing approaches cannot synthesize rhythmic singing voices given realistic music scores due to the domain gap between fine-grained music scores and realistic music scores. Furthermore, these manual annotation destroys the regularity of note durations in music scores, making fine-grained music scores inconvenient for composing. To tackle these challenges, we propose RMSSinger, the first RMS-SVS method, which takes realistic music scores as input, eliminating most of the tedious manual annotation and avoiding the aforementioned inconvenience. Note that music scores are based on words rather than phonemes, in RMSSinger, we introduce word-level modeling to avoid the time-consuming phoneme duration annotation and the complicated phoneme-level mel-note alignment. Furthermore, we propose the first diffusion-based pitch modeling method, which ameliorates the naturalness of existing pitch-modeling methods. To achieve these, we collect a new dataset containing realistic music scores and singing voices according to these realistic music scores from professional singers. Extensive experiments on the dataset demonstrate the effectiveness of our methods. Audio samples are available at https://rmssinger.github.io/.

pdf
FastDiff 2: Revisiting and Incorporating GANs and Diffusion Models in High-Fidelity Speech Synthesis
Rongjie Huang | Yi Ren | Ziyue Jiang | Chenye Cui | Jinglin Liu | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Generative adversarial networks (GANs) and denoising diffusion probabilistic models (DDPMs) have recently achieved impressive performances in image and audio synthesis. After revisiting their success in conditional speech synthesis, we find that 1) GANs sacrifice sample diversity for quality and speed, 2) diffusion models exhibit outperformed sample quality and diversity at a high computational cost, where achieving high-quality, fast, and diverse speech synthesis challenges all neural synthesizers. In this work, we propose to converge advantages from GANs and diffusion models by incorporating both classes, introducing dual-empowered modeling perspectives: 1) FastDiff 2 (DiffGAN), a diffusion model whose denoising process is parametrized by conditional GANs, and the non-Gaussian denoising distribution makes it much more stable to implement the reverse process with large steps sizes; and 2) FastDiff 2 (GANDiff), a generative adversarial network whose forward process is constructed by multiple denoising diffusion iterations, which exhibits better sample diversity than traditional GANs. Experimental results show that both variants enjoy an efficient 4-step sampling process and demonstrate superior sample quality and diversity. Audio samples are available at https://RevisitSpeech.github.io/

pdf
AlignSTS: Speech-to-Singing Conversion via Cross-Modal Alignment
Ruiqi Li | Rongjie Huang | Lichao Zhang | Jinglin Liu | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023

The speech-to-singing (STS) voice conversion task aims to generate singing samples corresponding to speech recordings while facing a major challenge: the alignment between the target (singing) pitch contour and the source (speech) content is difficult to learn in a text-free situation. This paper proposes AlignSTS, an STS model based on explicit cross-modal alignment, which views speech variance such as pitch and content as different modalities. Inspired by the mechanism of how humans will sing the lyrics to the melody, AlignSTS: 1) adopts a novel rhythm adaptor to predict the target rhythm representation to bridge the modality gap between content and pitch, where the rhythm representation is computed in a simple yet effective way and is quantized into a discrete space; and 2) uses the predicted rhythm representation to re-align the content based on cross-attention and conducts a cross-modal fusion for re-synthesize. Extensive experiments show that AlignSTS achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://alignsts.github.io.

pdf
DopplerBAS: Binaural Audio Synthesis Addressing Doppler Effect
Jinglin Liu | Zhenhui Ye | Qian Chen | Siqi Zheng | Wen Wang | Zhang Qinglin | Zhou Zhao
Findings of the Association for Computational Linguistics: ACL 2023

Recently, binaural audio synthesis (BAS) has emerged as a promising research field for its applications in augmented and virtual realities. Binaural audio helps ususers orient themselves and establish immersion by providing the brain with interaural time differences reflecting spatial information. However, existing BAS methods are limited in terms of phase estimation, which is crucial for spatial hearing. In this paper, we propose the DopplerBAS method to explicitly address the Doppler effect of the moving sound source. Specifically, we calculate the radial relative velocity of the moving speaker in spherical coordinates, which further guides the synthesis of binaural audio. This simple method introduces no additional hyper-parameters and does not modify the loss functions, and is plug-and-play: it scales well to different types of backbones. DopperBAS distinctly improves the representative WarpNet and BinauralGrad backbones in the phase error metric and reaches a new state of the art (SOTA): 0.780 (versus the current SOTA 0.807). Experiments and ablation studies demonstrate the effectiveness of our method.

pdf
AV-TranSpeech: Audio-Visual Robust Speech-to-Speech Translation
Rongjie Huang | Huadai Liu | Xize Cheng | Yi Ren | Linjun Li | Zhenhui Ye | Jinzheng He | Lichao Zhang | Jinglin Liu | Xiang Yin | Zhou Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Direct speech-to-speech translation (S2ST) aims to convert speech from one language into another, and has demonstrated significant progress to date. Despite the recent success, current S2ST models still suffer from distinct degradation in noisy environments and fail to translate visual speech (i.e., the movement of lips and teeth). In this work, we present AV-TranSpeech, the first audio-visual speech-to-speech (AV-S2ST) translation model without relying on intermediate text. AV-TranSpeech complements the audio stream with visual information to promote system robustness and opens up a host of practical applications: dictation or dubbing archival films. To mitigate the data scarcity with limited parallel AV-S2ST data, we 1) explore self-supervised pre-training with unlabeled audio-visual data to learn contextual representation, and 2) introduce cross-modal distillation with S2ST models trained on the audio-only corpus to further reduce the requirements of visual data. Experimental results on two language pairs demonstrate that AV-TranSpeech outperforms audio-only models under all settings regardless of the type of noise. With low-resource audio-visual data (10h, 30h), cross-modal distillation yields an improvement of 7.6 BLEU on average compared with baselines. Audio samples are available at https://AV-TranSpeech.github.io/.

pdf
CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-Training
Zhenhui Ye | Rongjie Huang | Yi Ren | Ziyue Jiang | Jinglin Liu | Jinzheng He | Xiang Yin | Zhou Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that learns from the prosody variance of the same text token under different contexts. Specifically, 1) with the design of a text encoder and a prosody encoder, we encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space; 2) we introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. 3) we show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker text-to-speech. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in CLAPSpeech. Source code and audio samples are available at https://clapspeech.github.io.

2022

pdf
Learning the Beauty in Songs: Neural Singing Voice Beautifier
Jinglin Liu | Chengxi Li | Yi Ren | Zhiying Zhu | Zhou Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We are interested in a novel task, singing voice beautification (SVB). Given the singing voice of an amateur singer, SVB aims to improve the intonation and vocal tone of the voice, while keeping the content and vocal timbre. Current automatic pitch correction techniques are immature, and most of them are restricted to intonation but ignore the overall aesthetic quality. Hence, we introduce Neural Singing Voice Beautifier (NSVB), the first generative model to solve the SVB task, which adopts a conditional variational autoencoder as the backbone and learns the latent representations of vocal tone. In NSVB, we propose a novel time-warping approach for pitch correction: Shape-Aware Dynamic Time Warping (SADTW), which ameliorates the robustness of existing time-warping approaches, to synchronize the amateur recording with the template pitch curve. Furthermore, we propose a latent-mapping algorithm in the latent space to convert the amateur vocal tone to the professional one. To achieve this, we also propose a new dataset containing parallel singing recordings of both amateur and professional versions. Extensive experiments on both Chinese and English songs demonstrate the effectiveness of our methods in terms of both objective and subjective metrics. Audio samples are available at https://neuralsvb.github.io. Codes: https://github.com/MoonInTheRiver/NeuralSVB.

2020

pdf
A Study of Non-autoregressive Model for Sequence Generation
Yi Ren | Jinglin Liu | Xu Tan | Zhou Zhao | Sheng Zhao | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Non-autoregressive (NAR) models generate all the tokens of a sequence in parallel, resulting in faster generation speed compared to their autoregressive (AR) counterparts but at the cost of lower accuracy. Different techniques including knowledge distillation and source-target alignment have been proposed to bridge the gap between AR and NAR models in various tasks such as neural machine translation (NMT), automatic speech recognition (ASR), and text to speech (TTS). With the help of those techniques, NAR models can catch up with the accuracy of AR models in some tasks but not in some others. In this work, we conduct a study to understand the difficulty of NAR sequence generation and try to answer: (1) Why NAR models can catch up with AR models in some tasks but not all? (2) Why techniques like knowledge distillation and source-target alignment can help NAR models. Since the main difference between AR and NAR models is that NAR models do not use dependency among target tokens while AR models do, intuitively the difficulty of NAR sequence generation heavily depends on the strongness of dependency among target tokens. To quantify such dependency, we propose an analysis model called CoMMA to characterize the difficulty of different NAR sequence generation tasks. We have several interesting findings: 1) Among the NMT, ASR and TTS tasks, ASR has the most target-token dependency while TTS has the least. 2) Knowledge distillation reduces the target-token dependency in target sequence and thus improves the accuracy of NAR models. 3) Source-target alignment constraint encourages dependency of a target token on source tokens and thus eases the training of NAR models.

pdf
SimulSpeech: End-to-End Simultaneous Speech to Text Translation
Yi Ren | Jinglin Liu | Xu Tan | Chen Zhang | Tao Qin | Zhou Zhao | Tie-Yan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

In this work, we develop SimulSpeech, an end-to-end simultaneous speech to text translation system which translates speech in source language to text in target language concurrently. SimulSpeech consists of a speech encoder, a speech segmenter and a text decoder, where 1) the segmenter builds upon the encoder and leverages a connectionist temporal classification (CTC) loss to split the input streaming speech in real time, 2) the encoder-decoder attention adopts a wait-k strategy for simultaneous translation. SimulSpeech is more challenging than previous cascaded systems (with simultaneous automatic speech recognition (ASR) and simultaneous neural machine translation (NMT)). We introduce two novel knowledge distillation methods to ensure the performance: 1) Attention-level knowledge distillation transfers the knowledge from the multiplication of the attention matrices of simultaneous NMT and ASR models to help the training of the attention mechanism in SimulSpeech; 2) Data-level knowledge distillation transfers the knowledge from the full-sentence NMT model and also reduces the complexity of data distribution to help on the optimization of SimulSpeech. Experiments on MuST-C English-Spanish and English-German spoken language translation datasets show that SimulSpeech achieves reasonable BLEU scores and lower delay compared to full-sentence end-to-end speech to text translation (without simultaneous translation), and better performance than the two-stage cascaded simultaneous translation model in terms of BLEU scores and translation delay.