Jessica Forde


2023

pdf
Prompting Multilingual Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages
Zheng Xin Yong | Ruochen Zhang | Jessica Forde | Skyler Wang | Arjun Subramonian | Holy Lovenia | Samuel Cahyawijaya | Genta Winata | Lintang Sutawika | Jan Christian Blaise Cruz | Yin Lin Tan | Long Phan | Long Phan | Rowena Garcia | Thamar Solorio | Alham Fikri Aji
Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching

While code-mixing is a common linguistic practice in many parts of the world, collecting high-quality and low-cost code-mixed data remains a challenge for natural language processing (NLP) research. The recent proliferation of Large Language Models (LLMs) compels one to ask: how capable are these systems in generating code-mixed data? In this paper, we explore prompting multilingual LLMs in a zero-shot manner to generate code-mixed data for seven languages in South East Asia (SEA), namely Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish. We find that publicly available multilingual instruction-tuned models such as BLOOMZ and Flan-T5-XXL are incapable of producing texts with phrases or clauses from different languages. ChatGPT exhibits inconsistent capabilities in generating code-mixed texts, wherein its per-formance varies depending on the prompt template and language pairing. For instance, ChatGPT generates fluent and natural Singlish texts (an English-based creole spoken in Singapore), but for English-Tamil language pair, the system mostly produces grammatically incorrect or semantically meaningless utterances. Furthermore, it may erroneously introduce languages not specified in the prompt. Based on our investigation, existing multilingual LLMs exhibit a wide range of proficiency in code-mixed data generation for SEA languages. As such, we advise against using LLMs in this context without extensive human checks.

2022

pdf bib
Towards Reproducible Machine Learning Research in Natural Language Processing
Ana Lucic | Maurits Bleeker | Samarth Bhargav | Jessica Forde | Koustuv Sinha | Jesse Dodge | Sasha Luccioni | Robert Stojnic
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts

While recent progress in the field of ML has been significant, the reproducibility of these cutting-edge results is often lacking, with many submissions lacking the necessary information in order to ensure subsequent reproducibility. Despite proposals such as the Reproducibility Checklist and reproducibility criteria at several major conferences, the reflex for carrying out research with reproducibility in mind is lacking in the broader ML community. We propose this tutorial as a gentle introduction to ensuring reproducible research in ML, with a specific emphasis on computational linguistics and NLP. We also provide a framework for using reproducibility as a teaching tool in university-level computer science programs.