Jan Cegin


2024

pdf
Effects of diversity incentives on sample diversity and downstream model performance in LLM-based text augmentation
Jan Cegin | Branislav Pecher | Jakub Simko | Ivan Srba | Maria Bielikova | Peter Brusilovsky
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The latest generative large language models (LLMs) have found their application in data augmentation tasks, where small numbers of text samples are LLM-paraphrased and then used to fine-tune downstream models. However, more research is needed to assess how different prompts, seed data selection strategies, filtering methods, or model settings affect the quality of paraphrased data (and downstream models). In this study, we investigate three text diversity incentive methods well established in crowdsourcing: taboo words, hints by previous outlier solutions, and chaining on previous outlier solutions. Using these incentive methods as part of instructions to LLMs augmenting text datasets, we measure their effects on generated texts’ lexical diversity and downstream model performance. We compare the effects over 5 different LLMs, 6 datasets and 2 downstream models. We show that diversity is most increased by taboo words, but downstream model performance is highest with hints.

2023

pdf
ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness
Jan Cegin | Jakub Simko | Peter Brusilovsky
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The emergence of generative large language models (LLMs) raises the question: what will be its impact on crowdsourcing? Traditionally, crowdsourcing has been used for acquiring solutions to a wide variety of human-intelligence tasks, including ones involving text generation, modification or evaluation. For some of these tasks, models like ChatGPT can potentially substitute human workers. In this study, we investigate whether this is the case for the task of paraphrase generation for intent classification. We apply data collection methodology of an existing crowdsourcing study (similar scale, prompts and seed data) using ChatGPT and Falcon-40B. We show that ChatGPT-created paraphrases are more diverse and lead to at least as robust models.