This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Extensive training datasets represent one of the important factors for the impressive learning capabilities of large language models (LLMs). However, these training datasets for current LLMs, especially the recent state-of-the-art models, are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is released in Hugging Face facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.
We study the problem of Event Causality Identification (ECI) that seeks to predict causal relation between event mentions in the text. In contrast to previous classification-based models, a few recent ECI methods have explored generative models to deliver state-of-the-art performance. However, such generative models cannot handle document-level ECI where long context between event mentions must be encoded to secure correct predictions. In addition, previous generative ECI methods tend to rely on external toolkits or human annotation to obtain necessary training signals. To address these limitations, we propose a novel generative framework that leverages Optimal Transport (OT) to automatically select the most important sentences and words from full documents. Specifically, we introduce hierarchical OT alignments between event pairs and the document to extract pertinent contexts. The selected sentences and words are provided as input and output to a T5 encoder-decoder model which is trained to generate both the causal relation label and salient contexts. This allows richer supervision without external tools. We conduct extensive evaluations on different datasets with multiple languages to demonstrate the benefits and state-of-the-art performance of ECI.
Event argument extraction (EAE) is a sub-task of event extraction where the goal is to identify roles of entity mentions for events in text. The current state-of-the-art approaches for this problem explore prompt-based methods to prompt pre-trained language models for arguments over input context. However, existing prompt-based methods mainly rely on discrete and manually-designed prompts that cannot exploit specific context for each example to improve customization for optimal performance. In addition, the discrete nature of current prompts prevents the incorporation of relevant context from multiple external documents to enrich prompts for EAE. To this end, we propose a novel prompt-based method for EAE that introduces soft prompts to facilitate the encoding of individual example context and multiple relevant documents to boost EAE. We extensively evaluate the proposed method on benchmark datasets for EAE to demonstrate its benefits with state-of-the-art performance.
Over the last few years, large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP) that fundamentally transform research and developments in the field. ChatGPT represents one of the most exciting LLM systems developed recently to showcase impressive skills for language generation and highly attract public attention. Among various exciting applications discovered for ChatGPT in English, the model can process and generate texts for multiple languages due to its multilingual training data. Given the broad adoption of ChatGPT for English in different problems and areas, a natural question is whether ChatGPT can also be applied effectively for other languages or it is necessary to develop more language-specific technologies. The answer to this question requires a thorough evaluation of ChatGPT over multiple tasks with diverse languages and large datasets (i.e., beyond reported anecdotes), which is still missing or limited in current research. Our work aims to fill this gap for the evaluation of ChatGPT and similar LLMs to provide more comprehensive information for multilingual NLP applications. In particular, we evaluate ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources. Compared to the performance of previous models, our extensive experiments demonstrate the worse performance of ChatGPT for different NLP tasks and languages, calling for further research to develop better models and understanding for multilingual learning.
Subevent Relation Extraction (SRE) is a task in Information Extraction that aims to recognize spatial and temporal containment relations between event mentions in text. Recent methods have utilized pre-trained language models to represent input texts for SRE. However, a key issue in existing SRE methods is the employment of sequential order of words in texts to feed into representation learning methods, thus unable to explicitly focus on important context words and their interactions to enhance representations. In this work, we introduce a new method for SRE that learns to induce effective graph structures for input texts to boost representation learning. Our method features a word alignment framework with dependency paths and optimal transport to identify important context words to form effective graph structures for SRE. In addition, to enable SRE research on non-English languages, we present a new multilingual SRE dataset for five typologically different languages. Extensive experiments reveal the state-of-the-art performance for our method on different datasets and languages.
An important problem of Information Extraction involves Event Causality Identification (ECI) that seeks to identify causal relation between pairs of event mentions. Prior models for ECI have mainly solved the problem using the classification framework that does not explore prediction/generation of important context words from input sentences for causal recognition. In this work, we consider the words along the dependency path between the two event mentions in the dependency tree as the important context words for ECI. We introduce dependency path generation as a complementary task for ECI, which can be solved jointly with causal label prediction to improve the performance. To facilitate the multi-task learning, we cast ECI into a generation problem that aims to generate both causal relation and dependency path words from input sentence. In addition, we propose to use the REINFORCE algorithm to train our generative model where novel reward functions are designed to capture both causal prediction accuracy and generation quality. The experiments on two benchmark datasets demonstrate state-of-the-art performance of the proposed model for ECI.