Heeyoung Kwak


2023

pdf
BREAK: Breaking the Dialogue State Tracking Barrier with Beam Search and Re-ranking
Seungpil Won | Heeyoung Kwak | Joongbo Shin | Janghoon Han | Kyomin Jung
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the recent advances in dialogue state tracking (DST), the joint goal accuracy (JGA) of the existing methods on MultiWOZ 2.1 still remains merely 60%. In our preliminary error analysis, we find that beam search produces a pool of candidates that is likely to include the correct dialogue state. Motivated by this observation, we introduce a novel framework, called BREAK (Beam search and RE-rAnKing), that achieves outstanding performance on DST. BREAK performs DST in two stages: (i) generating k-best dialogue state candidates with beam search and (ii) re-ranking the candidates to select the correct dialogue state. This simple yet powerful framework shows state-of-the-art performance on all versions of MultiWOZ and M2M datasets. Most notably, we push the joint goal accuracy to 80-90% on MultiWOZ 2.1-2.4, which is an improvement of 23.6%, 26.3%, 21.7%, and 10.8% over the previous best-performing models, respectively. The data and code will be available at https://github.com/tony-won/DST-BREAK