Hamed Hassanzadeh


2018

pdf
Identifying Risk Factors For Heart Disease in Electronic Medical Records: A Deep Learning Approach
Thanat Chokwijitkul | Anthony Nguyen | Hamed Hassanzadeh | Siegfried Perez
Proceedings of the BioNLP 2018 workshop

Automatic identification of heart disease risk factors in clinical narratives can expedite disease progression modelling and support clinical decisions. Existing practical solutions for cardiovascular risk detection are mostly hybrid systems entailing the integration of knowledge-driven and data-driven methods, relying on dictionaries, rules and machine learning methods that require a substantial amount of human effort. This paper proposes a comparative analysis on the applicability of deep learning, a re-emerged data-driven technique, in the context of clinical text classification. Various deep learning architectures were devised and evaluated for extracting heart disease risk factors from clinical documents. The data provided for the 2014 i2b2/UTHealth shared task focusing on identifying risk factors for heart disease was used for system development and evaluation. Results have shown that a relatively simple deep learning model can achieve a high micro-averaged F-measure of 0.9081, which is comparable to the best systems from the shared task. This is highly encouraging given the simplicity of the deep learning approach compared to the heavily feature-engineered hybrid approaches that were required to achieve state-of-the-art performances.

2017

pdf
Automatic Diagnosis Coding of Radiology Reports: A Comparison of Deep Learning and Conventional Classification Methods
Sarvnaz Karimi | Xiang Dai | Hamed Hassanzadeh | Anthony Nguyen
BioNLP 2017

Diagnosis autocoding services and research intend to both improve the productivity of clinical coders and the accuracy of the coding. It is an important step in data analysis for funding and reimbursement, as well as health services planning and resource allocation. We investigate the applicability of deep learning at autocoding of radiology reports using International Classification of Diseases (ICD). Deep learning methods are known to require large training data. Our goal is to explore how to use these methods when the training data is sparse, skewed and relatively small, and how their effectiveness compares to conventional methods. We identify optimal parameters that could be used in setting up a convolutional neural network for autocoding with comparable results to that of conventional methods.

2016

pdf bib
Evaluation of Medical Concept Annotation Systems on Clinical Records
Hamed Hassanzadeh | Anthony Nguyen | Bevan Koopman
Proceedings of the Australasian Language Technology Association Workshop 2016

2015

pdf
Similarity Metrics for Clustering PubMed Abstracts for Evidence Based Medicine
Hamed Hassanzadeh | Diego Mollá | Tudor Groza | Anthony Nguyen | Jane Hunter
Proceedings of the Australasian Language Technology Association Workshop 2015

pdf
Clinical Information Extraction Using Word Representations
Shervin Malmasi | Hamed Hassanzadeh | Mark Dras
Proceedings of the Australasian Language Technology Association Workshop 2015

pdf
UQeResearch: Semantic Textual Similarity Quantification
Hamed Hassanzadeh | Tudor Groza | Anthony Nguyen | Jane Hunter
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)