Giuliano Martinelli


2024

pdf
CNER: Concept and Named Entity Recognition
Giuliano Martinelli | Francesco Molfese | Simone Tedeschi | Alberte Fernández-Castro | Roberto Navigli
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Named entities – typically expressed via proper nouns – play a key role in Natural Language Processing, as their identification and comprehension are crucial in tasks such as Relation Extraction, Coreference Resolution and Question Answering, among others. Tasks like these also often entail dealing with concepts – typically represented by common nouns – which, however, have not received as much attention. Indeed, the potential of their identification and understanding remains underexplored, as does the benefit of a synergistic formulation with named entities. To fill this gap, we introduce Concept and Named Entity Recognition (CNER), a new unified task that handles concepts and entities mentioned in unstructured texts seamlessly. We put forward a comprehensive set of categories that can be used to model concepts and named entities jointly, and propose new approaches for the creation of CNER datasets. We evaluate the benefits of performing CNER as a unified task extensively, showing that a CNER model gains up to +5.4 and +8 macro F1 points when compared to specialized named entity and concept recognition systems, respectively. Finally, to encourage the development of CNER systems, we release our datasets and models at https://github.com/Babelscape/cner.

pdf
Maverick: Efficient and Accurate Coreference Resolution Defying Recent Trends
Giuliano Martinelli | Edoardo Barba | Roberto Navigli
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large autoregressive generative models have emerged as the cornerstone for achieving the highest performance across several Natural Language Processing tasks. However, the urge to attain superior results has, at times, led to the premature replacement of carefully designed task-specific approaches without exhaustive experimentation. The Coreference Resolution task is no exception; all recent state-of-the-art solutions adopt large generative autoregressive models that outperform encoder-based discriminative systems. In this work, we challenge this recent trend by introducing Maverick, a carefully designed – yet simple – pipeline, which enables running a state-of-the-art Coreference Resolution system within the constraints of an academic budget, outperforming models with up to 13 billion parameters with as few as 500 million parameters. Maverick achieves state-of-the-art performance on the CoNLL-2012 benchmark, training with up to 0.006x the memory resources and obtaining a 170x faster inference compared to previous state-of-the-art systems. We extensively validate the robustness of the Maverick framework with an array of diverse experiments, reporting improvements over prior systems in data-scarce, long-document, and out-of-domain settings. We release our code and models for research purposes at https://github.com/SapienzaNLP/maverick-coref.