Frederikus Hudi


2024

pdf
Disentangling Pretrained Representation to Leverage Low-Resource Languages in Multilingual Machine Translation
Frederikus Hudi | Zhi Qu | Hidetaka Kamigaito | Taro Watanabe
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multilingual neural machine translation aims to encapsulate multiple languages into a single model. However, it requires an enormous dataset, leaving the low-resource language (LRL) underdeveloped. As LRLs may benefit from shared knowledge of multilingual representation, we aspire to find effective ways to integrate unseen languages in a pre-trained model. Nevertheless, the intricacy of shared representation among languages hinders its full utilisation. To resolve this problem, we employed target language prediction and a central language-aware layer to improve representation in integrating LRLs. Focusing on improving LRLs in the linguistically diverse country of Indonesia, we evaluated five languages using a parallel corpus of 1,000 instances each, with experimental results measured by BLEU showing zero-shot improvement of 7.4 from the baseline score of 7.1 to a score of 15.5 at best. Further analysis showed that the gains in performance are attributed more to the disentanglement of multilingual representation in the encoder with the shift of the target language-specific representation in the decoder.

2023

pdf
NusaCrowd: Open Source Initiative for Indonesian NLP Resources
Samuel Cahyawijaya | Holy Lovenia | Alham Fikri Aji | Genta Winata | Bryan Wilie | Fajri Koto | Rahmad Mahendra | Christian Wibisono | Ade Romadhony | Karissa Vincentio | Jennifer Santoso | David Moeljadi | Cahya Wirawan | Frederikus Hudi | Muhammad Satrio Wicaksono | Ivan Parmonangan | Ika Alfina | Ilham Firdausi Putra | Samsul Rahmadani | Yulianti Oenang | Ali Septiandri | James Jaya | Kaustubh Dhole | Arie Suryani | Rifki Afina Putri | Dan Su | Keith Stevens | Made Nindyatama Nityasya | Muhammad Adilazuarda | Ryan Hadiwijaya | Ryandito Diandaru | Tiezheng Yu | Vito Ghifari | Wenliang Dai | Yan Xu | Dyah Damapuspita | Haryo Wibowo | Cuk Tho | Ichwanul Karo Karo | Tirana Fatyanosa | Ziwei Ji | Graham Neubig | Timothy Baldwin | Sebastian Ruder | Pascale Fung | Herry Sujaini | Sakriani Sakti | Ayu Purwarianti
Findings of the Association for Computational Linguistics: ACL 2023

We present NusaCrowd, a collaborative initiative to collect and unify existing resources for Indonesian languages, including opening access to previously non-public resources. Through this initiative, we have brought together 137 datasets and 118 standardized data loaders. The quality of the datasets has been assessed manually and automatically, and their value is demonstrated through multiple experiments.NusaCrowd’s data collection enables the creation of the first zero-shot benchmarks for natural language understanding and generation in Indonesian and the local languages of Indonesia. Furthermore, NusaCrowd brings the creation of the first multilingual automatic speech recognition benchmark in Indonesian and the local languages of Indonesia. Our work strives to advance natural language processing (NLP) research for languages that are under-represented despite being widely spoken.