Emily Goodwin
2022
Compositional Generalization in Dependency Parsing
Emily Goodwin
|
Siva Reddy
|
Timothy O’Donnell
|
Dzmitry Bahdanau
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Compositionality— the ability to combine familiar units like words into novel phrases and sentences— has been the focus of intense interest in artificial intelligence in recent years. To test compositional generalization in semantic parsing, Keysers et al. (2020) introduced Compositional Freebase Queries (CFQ). This dataset maximizes the similarity between the test and train distributions over primitive units, like words, while maximizing the compound divergence: the dissimilarity between test and train distributions over larger structures, like phrases. Dependency parsing, however, lacks a compositional generalization benchmark. In this work, we introduce a gold-standard set of dependency parses for CFQ, and use this to analyze the behaviour of a state-of-the art dependency parser (Qi et al., 2020) on the CFQ dataset. We find that increasing compound divergence degrades dependency parsing performance, although not as dramatically as semantic parsing performance. Additionally, we find the performance of the dependency parser does not uniformly degrade relative to compound divergence, and the parser performs differently on different splits with the same compound divergence. We explore a number of hypotheses for what causes the non-uniform degradation in dependency parsing performance, and identify a number of syntactic structures that drive the dependency parser’s lower performance on the most challenging splits.
2020
Probing Linguistic Systematicity
Emily Goodwin
|
Koustuv Sinha
|
Timothy J. O’Donnell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Recently, there has been much interest in the question of whether deep natural language understanding (NLU) models exhibit systematicity, generalizing such that units like words make consistent contributions to the meaning of the sentences in which they appear. There is accumulating evidence that neural models do not learn systematically. We examine the notion of systematicity from a linguistic perspective, defining a set of probing tasks and a set of metrics to measure systematic behaviour. We also identify ways in which network architectures can generalize non-systematically, and discuss why such forms of generalization may be unsatisfying. As a case study, we perform a series of experiments in the setting of natural language inference (NLI). We provide evidence that current state-of-the-art NLU systems do not generalize systematically, despite overall high performance.