Dananjay Srinivas


2023

pdf
Discourse Analysis via Questions and Answers: Parsing Dependency Structures of Questions Under Discussion
Wei-Jen Ko | Yating Wu | Cutter Dalton | Dananjay Srinivas | Greg Durrett | Junyi Jessy Li
Findings of the Association for Computational Linguistics: ACL 2023

Automatic discourse processing is bottlenecked by data: current discourse formalisms pose highly demanding annotation tasks involving large taxonomies of discourse relations, making them inaccessible to lay annotators. This work instead adopts the linguistic framework of Questions Under Discussion (QUD) for discourse analysis and seeks to derive QUD structures automatically. QUD views each sentence as an answer to a question triggered in prior context; thus, we characterize relationships between sentences as free-form questions, in contrast to exhaustive fine-grained taxonomies. We develop the first-of-its-kind QUD parser that derives a dependency structure of questions over full documents, trained using a large, crowdsourced question-answering dataset DCQA (Ko et al., 2022). Human evaluation results show that QUD dependency parsing is possible for language models trained with this crowdsourced, generalizable annotation scheme. We illustrate how our QUD structure is distinct from RST trees, and demonstrate the utility of QUD analysis in the context of document simplification. Our findings show that QUD parsing is an appealing alternative for automatic discourse processing.

pdf
OLEA: Tool and Infrastructure for Offensive Language Error Analysis in English
Marie Grace | Jay Seabrum | Dananjay Srinivas | Alexis Palmer
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

State-of-the-art models for identifying offensive language often fail to generalize over more nuanced or implicit cases of offensive and hateful language. Understanding model performance on complex cases is key for building robust models that are effective in real-world settings. To help researchers efficiently evaluate their models, we introduce OLEA, a diagnostic, open-source, extensible Python library that provides easy-to-use tools for error analysis in the context of detecting offensive language in English. OLEA packages analyses and datasets proposed by prior scholarship, empowering researchers to build effective, explainable and generalizable offensive language classifiers.

pdf
On the Potential and Limitations of Few-Shot In-Context Learning to Generate Metamorphic Specifications for Tax Preparation Software
Dananjay Srinivas | Rohan Das | Saeid Tizpaz-Niari | Ashutosh Trivedi | Maria Leonor Pacheco
Proceedings of the Natural Legal Language Processing Workshop 2023

Due to the ever-increasing complexity of income tax laws in the United States, the number of US taxpayers filing their taxes using tax preparation software henceforth, tax software) continues to increase. According to the U.S. Internal Revenue Service (IRS), in FY22, nearly 50% of taxpayers filed their individual income taxes using tax software. Given the legal consequences of incorrectly filing taxes for the taxpayer, ensuring the correctness of tax software is of paramount importance. Metamorphic testing has emerged as a leading solution to test and debug legal-critical tax software due to the absence of correctness requirements and trustworthy datasets. The key idea behind metamorphic testing is to express the properties of a system in terms of the relationship between one input and its slightly metamorphosed twinned input. Extracting metamorphic properties from IRS tax publications is a tedious and time-consuming process. As a response, this paper formulates the task of generating metamorphic specifications as a translation task between properties extracted from tax documents - expressed in natural language - to a contrastive first-order logic form. We perform a systematic analysis on the potential and limitations of in-context learning with Large Language Models (LLMs) for this task, and outline a research agenda towards automating the generation of metamorphic specifications for tax preparation software.