Christopher Hench


2023

pdf
MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages
Jack FitzGerald | Christopher Hench | Charith Peris | Scott Mackie | Kay Rottmann | Ana Sanchez | Aaron Nash | Liam Urbach | Vishesh Kakarala | Richa Singh | Swetha Ranganath | Laurie Crist | Misha Britan | Wouter Leeuwis | Gokhan Tur | Prem Natarajan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present the MASSIVE dataset–Multilingual Amazon Slu resource package (SLURP) for Slot-filling, Intent classification, and Virtual assistant Evaluation. MASSIVE contains 1M realistic, parallel, labeled virtual assistant utterances spanning 51 languages, 18 domains, 60 intents, and 55 slots. MASSIVE was created by tasking professional translators to localize the English-only SLURP dataset into 50 typologically diverse languages from 29 genera. We also present modeling results on XLM-R and mT5, including exact match accuracy, intent classification accuracy, and slot-filling F1 score. We have released our dataset, modeling code, and models publicly.

2022

pdf bib
Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)
Jack FitzGerald | Kay Rottmann | Julia Hirschberg | Mohit Bansal | Anna Rumshisky | Charith Peris | Christopher Hench
Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)

pdf
Massively Multilingual Natural Language Understanding 2022 (MMNLU-22) Workshop and Competition
Jack FitzGerald | Christopher Hench | Charith Peris | Kay Rottmann
Proceedings of the Massively Multilingual Natural Language Understanding Workshop (MMNLU-22)

To be writen (workshop summary paper)

2017

pdf
Phonological Soundscapes in Medieval Poetry
Christopher Hench
Proceedings of the Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

The oral component of medieval poetry was integral to its performance and reception. Yet many believe that the medieval voice has been forever lost, and any attempts at rediscovering it are doomed to failure due to scribal practices, manuscript mouvance, and linguistic normalization in editing practices. This paper offers a method to abstract from this noise and better understand relative differences in phonological soundscapes by considering syllable qualities. The presented syllabification method and soundscape analysis offer themselves as cross-disciplinary tools for low-resource languages. As a case study, we examine medieval German lyric and argue that the heavily debated lyrical ‘I’ follows a unique trajectory through soundscapes, shedding light on the performance and practice of these poets.

2016

pdf bib
Supervised Machine Learning for Hybrid Meter
Alex Estes | Christopher Hench
Proceedings of the Fifth Workshop on Computational Linguistics for Literature