Chengfei Lv
2024
Making Language Models Better Tool Learners with Execution Feedback
Shuofei Qiao
|
Honghao Gui
|
Chengfei Lv
|
Qianghuai Jia
|
Huajun Chen
|
Ningyu Zhang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Tools serve as pivotal interfaces that enable humans to understand and reshape the environment. With the advent of foundation models, AI systems can utilize tools to expand their capabilities and interact with the real world. Existing tool learning methodologies, encompassing supervised fine-tuning and prompt engineering approaches, often induce large language models to utilize tools indiscriminately, as complex tasks often exceed their own competencies. However, introducing tools for simple tasks, which the models themselves can readily resolve, can inadvertently propagate errors rather than enhance performance. This leads to the research question: can we teach language models when and how to use tools? To meet this need, we propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution, thereby learning when and how to use tools effectively. Experimental results, backed by further analysis, show that TRICE can make the large language model selectively use tools by improving the accuracy of tool usage while enhancing insufficient tool learning and mitigating excessive reliance on tools.
AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning
Shuofei Qiao
|
Ningyu Zhang
|
Runnan Fang
|
Yujie Luo
|
Wangchunshu Zhou
|
Yuchen Jiang
|
Chengfei Lv
|
Huajun Chen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Language agents have achieved considerable performance on various complex question-answering tasks by planning with external tools. Despite the incessant exploration in this field, existing language agent systems still struggle with costly, non-reproducible data reliance and face the challenge of compelling a single model for multiple functions. To this end, we introduce AutoAct, an automatic agent learning framework for QA that does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models (e.g., GPT-4). Given limited data with a tool library, AutoAct first automatically synthesizes planning trajectories without any assistance from humans or strong closed-source models. Then, AutoAct leverages a division-of-labor strategy to automatically differentiate based on the target task information and synthesized trajectories, producing a sub-agent group to complete the task. We conduct comprehensive experiments with different LLMs, which demonstrates that AutoAct yields better or parallel performance compared to various strong baselines. Further analysis demonstrates the effectiveness of the division-of-labor strategy, with the trajectory quality generated by AutoAct generally outperforming that of others.
Search
Co-authors
- Shuofei Qiao 2
- Huajun Chen 2
- Ningyu Zhang 2
- Honghao Gui 1
- Qianghuai Jia 1
- show all...