Atharva Naik


2023

pdf
Data Augmentation for Code Translation with Comparable Corpora and Multiple References
Yiqing Xie | Atharva Naik | Daniel Fried | Carolyn Rose
Findings of the Association for Computational Linguistics: EMNLP 2023

One major challenge of translating code between programming languages is that parallel training data is often limited. To overcome this challenge, we present two data augmentation techniques, one that builds comparable corpora (i.e., code pairs with similar functionality), and another that augments existing parallel data with multiple reference translations. Specifically, we build and analyze multiple types of comparable corpora, including programs generated from natural language documentation using a code generation model. Furthermore, to reduce overfitting to a single reference translation, we automatically generate additional translation references for available parallel data and filter the translations by unit tests, which increases variation in target translations. Experiments show that our data augmentation techniques significantly improve CodeT5 for translation between Java, Python, and C++ by an average of 7.5% Computational Accuracy (CA@1), which verifies the correctness of translations by execution. The code is available at https://github.com/Veronicium/CMTrans.

pdf
SYNC: A Structurally Guided Hard Negative Curricula for Generalizable Neural Code Search
Atharva Naik | Soumitra Das | Jyothi Vedurada | Somak Aditya
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

2022

pdf
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
Yizhong Wang | Swaroop Mishra | Pegah Alipoormolabashi | Yeganeh Kordi | Amirreza Mirzaei | Atharva Naik | Arjun Ashok | Arut Selvan Dhanasekaran | Anjana Arunkumar | David Stap | Eshaan Pathak | Giannis Karamanolakis | Haizhi Lai | Ishan Purohit | Ishani Mondal | Jacob Anderson | Kirby Kuznia | Krima Doshi | Kuntal Kumar Pal | Maitreya Patel | Mehrad Moradshahi | Mihir Parmar | Mirali Purohit | Neeraj Varshney | Phani Rohitha Kaza | Pulkit Verma | Ravsehaj Singh Puri | Rushang Karia | Savan Doshi | Shailaja Keyur Sampat | Siddhartha Mishra | Sujan Reddy A | Sumanta Patro | Tanay Dixit | Xudong Shen
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions—training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones.Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.

pdf
Representation Learning for Conversational Data using Discourse Mutual Information Maximization
Bishal Santra | Sumegh Roychowdhury | Aishik Mandal | Vasu Gurram | Atharva Naik | Manish Gupta | Pawan Goyal
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Although many pretrained models exist for text or images, there have been relatively fewer attempts to train representations specifically for dialog understanding. Prior works usually relied on finetuned representations based on generic text representation models like BERT or GPT-2. But such language modeling pretraining objectives do not take the structural information of conversational text into consideration. Although generative dialog models can learn structural features too, we argue that the structure-unaware word-by-word generation is not suitable for effective conversation modeling. We empirically demonstrate that such representations do not perform consistently across various dialog understanding tasks. Hence, we propose a structure-aware Mutual Information based loss-function DMI (Discourse Mutual Information) for training dialog-representation models, that additionally captures the inherent uncertainty in response prediction. Extensive evaluation on nine diverse dialog modeling tasks shows that our proposed DMI-based models outperform strong baselines by significant margins.