Ashita Saxena


2024

pdf
Addressing Bias and Hallucination in Large Language Models
Nihar Ranjan Sahoo | Ashita Saxena | Kishan Maharaj | Arif A. Ahmad | Abhijit Mishra | Pushpak Bhattacharyya
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Summaries

In the landscape of natural language processing (NLP), addressing the challenges of bias and hallucination is paramount to ensuring the ethical and unbiased development of Large Language Models (LLMs). This tutorial delves into the intricate dimensions of LLMs, shedding light on the critical importance of understanding and mitigating the profound impacts of bias and hallucination. Divided into two parts, the first part delves deep into the complexity of bias propagation in LLM development, where we dissect its origins and far-reaching impacts. We then present innovative methodologies for mitigating diverse forms of bias, including dynamic word embeddings and robust benchmarking strategies. The second part of the tutorial discusses hallucination - a prevalent issue in generative AI systems such as LLMs. Through advanced data-driven techniques, we decode its intricate effects and complexities, followed factually-driven mitigation strategies. Furthermore, we shed light on the pivotal role of human cognitive behavior in the context of hallucination, drawing insights from cognitive data, including human eye-tracking data. Ultimately, this cutting-edge tutorial serves as a guiding light, equipping participants with indispensable tools and insights to navigate the ethical complexities of LLMs, thus paving the way for the development of unbiased and ethically robust NLP systems.

2023

pdf
Eyes Show the Way: Modelling Gaze Behaviour for Hallucination Detection
Kishan Maharaj | Ashita Saxena | Raja Kumar | Abhijit Mishra | Pushpak Bhattacharyya
Findings of the Association for Computational Linguistics: EMNLP 2023

Detecting hallucinations in natural language processing (NLP) is a critical undertaking that demands a deep understanding of both the semantic and pragmatic aspects of languages. Cognitive approaches that leverage users’ behavioural signals, such as gaze, have demonstrated effectiveness in addressing NLP tasks with similar linguistic complexities. However, their potential in the context of hallucination detection remains largely unexplored. In this paper, we propose a novel cognitive approach for hallucination detection that leverages gaze signals from humans. We first collect and introduce an eye tracking corpus (IITB-HGC: IITB-Hallucination Gaze corpus) consisting of 500 instances, annotated by five annotators for hallucination detection. Our analysis reveals that humans selectively attend to relevant parts of the text based on distributional similarity, similar to the attention bias phenomenon in psychology. We identify two attention strategies employed by humans: global attention, which focuses on the most informative sentence, and local attention, which focuses on important words within a sentence. Leveraging these insights, we propose a novel cognitive framework for hallucination detection that incorporates these attention biases. Experimental evaluations on the FactCC dataset demonstrate the efficacy of our approach, obtaining a balanced accuracy of 87.1%. Our study highlights the potential of gaze-based approaches in addressing the task of hallucination detection and sheds light on the cognitive processes employed by humans in identifying inconsistencies.

pdf
NLI to the Rescue: Mapping Entailment Classes to Hallucination Categories in Abstractive Summarization
Naveen Badathala | Ashita Saxena | Pushpak Bhattacharyya
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

In this paper, we detect hallucinations in summaries generated by abstractive summarization models. We focus on three types of hallucination viz. intrinsic, extrinsic, and nonhallucinated. The method used for detecting hallucination is based on textual entailment. Given a premise and a hypothesis, textual entailment classifies the hypothesis as contradiction, neutral, or entailment. These three classes of textual entailment are mapped to intrinsic, extrinsic, and non-hallucinated respectively. We fine-tune a RoBERTa-large model on NLI datasets and use it to detect hallucinations on the XSumFaith dataset. We demonstrate that our simple approach using textual entailment outperforms the existing factuality inconsistency detection systems by 12% and we provide insightful analysis of all types of hallucination. To advance research in this area, we create and release a dataset, XSumFaith++, which contains balanced instances of hallucinated and non-hallucinated summaries.