This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries. However, this has also raised concerns about the potential misuse of such texts in journalism, education, and academia. In this study, we strive to create automated systems that can detect machine-generated texts and pinpoint potential misuse. We first introduce a large-scale benchmark M4, which is a multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Through an extensive empirical study of this dataset, we show that it is challenging for detectors to generalize well on instances from unseen domains or LLMs. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and that there is a lot of room for improvement. We believe that our dataset will enable future research towards more robust approaches to this pressing societal problem. The dataset is available at https://github.com/mbzuai-nlp/M4
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factually correct, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of a particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for seven different LLMs and four languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain and multi-generator corpus of MGTs — M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
Sequence-to-sequence (seq2seq) models based on the Transformer architecture have become a ubiquitous tool applicable not only to classical text generation tasks such as machine translation and summarization but also to any other task where an answer can be represented in a form of a finite text fragment (e.g., question answering). However, when deploying a model in practice, we need not only high performance but also an ability to determine cases where the model is not applicable. Uncertainty estimation (UE) techniques provide a tool for identifying out-of-domain (OOD) input where the model is susceptible to errors. State-of-the-art UE methods for seq2seq models rely on computationally heavyweight and impractical deep ensembles. In this work, we perform an empirical investigation of various novel UE methods for large pre-trained seq2seq models T5 and BART on three tasks: machine translation, text summarization, and question answering. We apply computationally lightweight density-based UE methods to seq2seq models and show that they often outperform heavyweight deep ensembles on the task of OOD detection.
Recent advancements in the capabilities of large language models (LLMs) have paved the way for a myriad of groundbreaking applications in various fields. However, a significant challenge arises as these models often “hallucinate”, i.e., fabricate facts without providing users an apparent means to discern the veracity of their statements. Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of LLMs. However, to date, research on UE methods for LLMs has been focused primarily on theoretical rather than engineering contributions. In this work, we tackle this issue by introducing LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python. Additionally, it introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores, empowering end-users to discern unreliable responses. LM-Polygraph is compatible with the most recent LLMs, including BLOOMz, LLaMA-2, ChatGPT, and GPT-4, and is designed to support future releases of similarly-styled LMs.
Many text classification tasks are inherently ambiguous, which results in automatic systems having a high risk of making mistakes, in spite of using advanced machine learning models. For example, toxicity detection in user-generated content is a subjective task, and notions of toxicity can be annotated according to a variety of definitions that can be in conflict with one another. Instead of relying solely on automatic solutions, moderation of the most difficult and ambiguous cases can be delegated to human workers. Potential mistakes in automated classification can be identified by using uncertainty estimation (UE) techniques. Although UE is a rapidly growing field within natural language processing, we find that state-of-the-art UE methods estimate only epistemic uncertainty and show poor performance, or under-perform trivial methods for ambiguous tasks such as toxicity detection. We argue that in order to create robust uncertainty estimation methods for ambiguous tasks it is necessary to account also for aleatoric uncertainty. In this paper, we propose a new uncertainty estimation method that combines epistemic and aleatoric UE methods. We show that by using our hybrid method, we can outperform state-of-the-art UE methods for toxicity detection and other ambiguous text classification tasks.
Medical data annotation requires highly qualified expertise. Despite the efforts devoted to medical entity linking in different languages, available data is very sparse in terms of both data volume and languages. In this work, we establish benchmarks for cross-lingual medical entity linking using clinical reports, clinical guidelines, and medical research papers. We present a test set filtering procedure designed to analyze the “hard cases” of entity linking approaching zero-shot cross-lingual transfer learning, evaluate state-of-the-art models, and draw several interesting conclusions based on our evaluation results.
In this paper, we describe entity linking annotation over nested named entities in the recently released Russian NEREL dataset for information extraction. The NEREL collection is currently the largest Russian dataset annotated with entities and relations. It includes 933 news texts with annotation of 29 entity types and 49 relation types. The paper describes the main design principles behind NEREL’s entity linking annotation, provides its statistics, and reports evaluation results for several entity linking baselines. To date, 38,152 entity mentions in 933 documents are linked to Wikidata. The NEREL dataset is publicly available.
We present ALToolbox – an open-source framework for active learning (AL) annotation in natural language processing. Currently, the framework supports text classification, sequence tagging, and seq2seq tasks. Besides state-of-the-art query strategies, ALToolbox provides a set of tools that help to reduce computational overhead and duration of AL iterations and increase annotated data reusability. The framework aims to support data scientists and researchers by providing an easy-to-deploy GUI annotation tool directly in the Jupyter IDE and an extensible benchmark for novel AL methods. We prepare a small demonstration of ALToolbox capabilities available online. The code of the framework is published under the MIT license.
We present RuCCoN, a new dataset for clinical concept normalization in Russian manually annotated by medical professionals. It contains over 16,028 entity mentions manually linked to over 2,409 unique concepts from the Russian language part of the UMLS ontology. We provide train/test splits for different settings (stratified, zero-shot, and CUI-less) and present strong baselines obtained with state-of-the-art models such as SapBERT. At present, Russian medical NLP is lacking in both datasets and trained models, and we view this work as an important step towards filling this gap. Our dataset and annotation guidelines are available at https://github.com/sberbank-ai-lab/RuCCoN.
Active learning (AL) is a prominent technique for reducing the annotation effort required for training machine learning models. Deep learning offers a solution for several essential obstacles to deploying AL in practice but introduces many others. One of such problems is the excessive computational resources required to train an acquisition model and estimate its uncertainty on instances in the unlabeled pool. We propose two techniques that tackle this issue for text classification and tagging tasks, offering a substantial reduction of AL iteration duration and the computational overhead introduced by deep acquisition models in AL. We also demonstrate that our algorithm that leverages pseudo-labeling and distilled models overcomes one of the essential obstacles revealed previously in the literature. Namely, it was shown that due to differences between an acquisition model used to select instances during AL and a successor model trained on the labeled data, the benefits of AL can diminish. We show that our algorithm, despite using a smaller and faster acquisition model, is capable of training a more expressive successor model with higher performance.
Construction of human-curated annotated datasets for abstractive text summarization (ATS) is very time-consuming and expensive because creating each instance requires a human annotator to read a long document and compose a shorter summary that would preserve the key information relayed by the original document. Active Learning (AL) is a technique developed to reduce the amount of annotation required to achieve a certain level of machine learning model performance. In information extraction and text classification, AL can reduce the amount of labor up to multiple times. Despite its potential for aiding expensive annotation, as far as we know, there were no effective AL query strategies for ATS. This stems from the fact that many AL strategies rely on uncertainty estimation, while as we show in our work, uncertain instances are usually noisy, and selecting them can degrade the model performance compared to passive annotation. We address this problem by proposing the first effective query strategy for AL in ATS based on diversity principles. We show that given a certain annotation budget, using our strategy in AL annotation helps to improve the model performance in terms of ROUGE and consistency scores. Additionally, we analyze the effect of self-learning and show that it can additionally increase the performance of the model.
Uncertainty estimation (UE) of model predictions is a crucial step for a variety of tasks such as active learning, misclassification detection, adversarial attack detection, out-of-distribution detection, etc. Most of the works on modeling the uncertainty of deep neural networks evaluate these methods on image classification tasks. Little attention has been paid to UE in natural language processing. To fill this gap, we perform a vast empirical investigation of state-of-the-art UE methods for Transformer models on misclassification detection in named entity recognition and text classification tasks and propose two computationally efficient modifications, one of which approaches or even outperforms computationally intensive methods.
Annotating training data for sequence tagging of texts is usually very time-consuming. Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget. We are the first to thoroughly investigate this powerful combination for the sequence tagging task. We conduct an extensive empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework and find the best combinations for different types of models. Besides, we also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance and reduces obstacles for applying deep active learning in practice.
In this work, we consider the problem of uncertainty estimation for Transformer-based models. We investigate the applicability of uncertainty estimates based on dropout usage at the inference stage (Monte Carlo dropout). The series of experiments on natural language understanding tasks shows that the resulting uncertainty estimates improve the quality of detection of error-prone instances. Special attention is paid to the construction of computationally inexpensive estimates via Monte Carlo dropout and Determinantal Point Processes.
While Masked Language Models (MLM) are pre-trained on massive datasets, the additional training with the MLM objective on domain or task-specific data before fine-tuning for the final task is known to improve the final performance. This is usually referred to as the domain or task adaptation step. However, unlike the initial pre-training, this step is performed for each domain or task individually and is still rather slow, requiring several GPU days compared to several GPU hours required for the final task fine-tuning. We argue that the standard MLM objective leads to inefficiency when it is used for the adaptation step because it mostly learns to predict the most frequent words, which are not necessarily related to a final task. We propose a technique for more efficient adaptation that focuses on predicting words with large weights of the Naive Bayes classifier trained for the task at hand, which are likely more relevant than the most frequent words. The proposed method provides faster adaptation and better final performance for sentiment analysis compared to the standard approach.
Disambiguation of word senses in context is easy for humans, but is a major challenge for automatic approaches. Sophisticated supervised and knowledge-based models were developed to solve this task. However, (i) the inherent Zipfian distribution of supervised training instances for a given word and/or (ii) the quality of linguistic knowledge representations motivate the development of completely unsupervised and knowledge-free approaches to word sense disambiguation (WSD). They are particularly useful for under-resourced languages which do not have any resources for building either supervised and/or knowledge-based models. In this paper, we present a method that takes as input a standard pre-trained word embedding model and induces a fully-fledged word sense inventory, which can be used for disambiguation in context. We use this method to induce a collection of sense inventories for 158 languages on the basis of the original pre-trained fastText word embeddings by Grave et al., (2018), enabling WSD in these languages. Models and system are available online.
Semantic frames are formal linguistic structures describing situations/actions/events, e.g. Commercial transfer of goods. Each frame provides a set of roles corresponding to the situation participants, e.g. Buyer and Goods, and lexical units (LUs) – words and phrases that can evoke this particular frame in texts, e.g. Sell. The scarcity of annotated resources hinders wider adoption of frame semantics across languages and domains. We investigate a simple yet effective method, lexical substitution with word representation models, to automatically expand a small set of frame-annotated sentences with new words for their respective roles and LUs. We evaluate the expansion quality using FrameNet. Contextualized models demonstrate overall superior performance compared to the non-contextualized ones on roles. However, the latter show comparable performance on the task of LU expansion.
We build the first full pipeline for semantic role labelling of Russian texts. The pipeline implements predicate identification, argument extraction, argument classification (labeling), and global scoring via integer linear programming. We train supervised neural network models for argument classification using Russian semantically annotated corpus – FrameBank. However, we note that this resource provides annotations only to a very limited set of predicates. We combat the problem of annotation scarcity by introducing two models that rely on different sets of features: one for “known” predicates that are present in the training set and one for “unknown” predicates that are not. We show that the model for “unknown” predicates can alleviate the lack of annotation by using pretrained embeddings. We perform experiments with various types of embeddings including the ones generated by deep pretrained language models: word2vec, FastText, ELMo, BERT, and show that embeddings generated by deep pretrained language models are superior to classical shallow embeddings for argument classification of both “known” and “unknown” predicates.
Results of the first experimental evaluation of machine learning models trained on Ru-RSTreebank – first Russian corpus annotated within RST framework – are presented. Various lexical, quantitative, morphological, and semantic features were used. In rhetorical relation classification, ensemble of CatBoost model with selected features and a linear SVM model provides the best score (macro F1 = 54.67 ± 0.38). We discover that most of the important features for rhetorical relation classification are related to discourse connectives derived from the connectives lexicon for Russian and from other sources.
This paper presents the first gold-standard resource for Russian annotated with compositionality information of noun compounds. The compound phrases are collected from the Universal Dependency treebanks according to part of speech patterns, such as ADJ+NOUN or NOUN+NOUN, using the gold-standard annotations. Each compound phrase is annotated by two experts and a moderator according to the following schema: the phrase can be either compositional, non-compositional, or ambiguous (i.e., depending on the context it can be interpreted both as compositional or non-compositional). We conduct an experimental evaluation of models and methods for predicting compositionality of noun compounds in unsupervised and supervised setups. We show that methods from previous work evaluated on the proposed Russian-language resource achieve the performance comparable with results on English corpora.